Skip to main content

A Python wrapper around the NRLMSIS model.

Project description

https://swxtrec.github.io/pymsis/_static/pymsis-logo.png

pymsis: A python wrapper of the NRLMSIS model

PyPi Downloads GitHubActions

Pymsis is meant to be a minimal and fast Python wrapper of the NRLMSIS models. Documentation to get started quickly can be found on the home page. It includes some examples that demonstrate how to access and plot the data.

NRL Mass Spectrometer, Incoherent Scatter Radar Extended Model (MSIS)

The MSIS model is developed by the Naval Research Laboratory.

Note that the MSIS2 code is not available for commercial use without contacting NRL. See the MSIS2 license file for explicit details. We do not repackage any of the MSIS source code in this repository for that reason. However, we do provide utilities to easily download and extract the original source code. By using that code you agree to their terms and conditions.

References

Please acknowledge the University of Colorado Space Weather Technology, Research and Education Center (SWx TREC) and cite the original papers if you make use of this model in a publication.

Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M., Mlynczak, M. G., et al. (2020). NRLMSIS 2.0: A whole‐atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 7, e2020EA001321. https://doi.org/10.1029/2020EA001321

The Original NRLMSISE-00 paper

Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C., NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107( A12), 1468, doi:10.1029/2002JA009430, 2002.

Installation

The easiest way to install pymsis is to install from PyPI.

pip install pymsis

For the most up-to-date pymsis, you can install directly from the git repository

pip install git+https://github.com/SWxTREC/pymsis.git

or to work on it locally, you can clone the repository and use an editable install

git clone https://github.com/SWxTREC/pymsis.git
cd pymsis
pip install -e .

Remote installation

The installation is dependent on access to the NRL source code. If the download fails, of you have no internet access you can manually install the Fortran source code as follows.

  1. Download the source code

    The source code is hosted on the NRL’s website: https://map.nrl.navy.mil/map/pub/nrl/NRLMSIS/NRLMSIS2.0/ Download the NRLMSIS2.0.tar.gz file to your local system.

  2. Extract the source files

    The tar file needs to be extracted to a new msis2 directory in the base of the pymsis package.

    mkdir msis2
    tar -xvzf NRLMSIS2.0.tar.gz -C msis2/
  3. Install the Python package

    pip install .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymsis-0.3.0.tar.gz (89.0 kB view details)

Uploaded Source

Built Distributions

pymsis-0.3.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pymsis-0.3.0-cp39-cp39-win32.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86

pymsis-0.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pymsis-0.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

pymsis-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pymsis-0.3.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pymsis-0.3.0-cp38-cp38-win32.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86

pymsis-0.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pymsis-0.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

pymsis-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pymsis-0.3.0-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

pymsis-0.3.0-cp37-cp37m-win32.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86

pymsis-0.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pymsis-0.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

pymsis-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file pymsis-0.3.0.tar.gz.

File metadata

  • Download URL: pymsis-0.3.0.tar.gz
  • Upload date:
  • Size: 89.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0.tar.gz
Algorithm Hash digest
SHA256 8f443ee1ff0896d3ff54558572a23e36cca1e9c346444f55882f816983296d41
MD5 eea078b043f01a1ed3f2fa96a87ea6f7
BLAKE2b-256 1cec5cbfa9483ad7183be0ded3b9fb7b504ee726825166e5e252ae76b3844204

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5ad83515f652670815d39fe14c504ff7fccb78dc68730d8596244c4d248b1edf
MD5 9df63e2de3ef82765cf90cd5882da4b5
BLAKE2b-256 5d0a8282e42ffe676c431118b3ea90478846bcc22f5032b1f99aa871b3c4e956

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7dc293f37f789ab4becb245fb7db77a4eeee17d707518af6464a0d615cd6d69b
MD5 1c277cf9945078ba27d41aaef457f273
BLAKE2b-256 96ad51a8ce4556a40a33528993c4a64bb0e9385e61e6ee7676311484c4b9dd91

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pymsis-0.3.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 92b8e38f9226a4826c8afbe6118c860a8dc1b950cb903df4975c282724f41705
MD5 e465053db70e835d194b3c2013cb784e
BLAKE2b-256 fdd08634a6f75f0699096013d90e36f900aeff0a66ae69f4354abf35e129c4da

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1a9210c5626a90b23a7a1a972f1b1eef52c87463a57e5fa87a036f027f776920
MD5 d8c3e5bd447ddb97928d57495d9c1d48
BLAKE2b-256 1a06b3d5fde0d7304e7c899ec451be9705bc2be3ec319580325c086ebc7f149e

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6288be4093970f8a68551c324213e725a44cc650b56a9c5f9f544a793202f576
MD5 8d7bef71c30fa0a696f908ebcd3b70ef
BLAKE2b-256 c4eb1d64e8ca5b1eb830796a5b6452bbbe603fcde3192750d31c0b9866b0c6e6

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 684d824670116dc0b13a7c3d3ab68ef5eb61cafa0de1b716cd3a46016132f899
MD5 bfbe172f4e6d3e53a23344f8a9a74e3b
BLAKE2b-256 d3cc16b4c6aaddee6336d85838819169ee83136b274e22a9d8f46ee905f7e7ae

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 04864943bbad69a97111fde3ecfd32e21b7e3569f0dd8d79ff15b031276b28a1
MD5 c236d52e8346d75d445a4d15a4b0fdfe
BLAKE2b-256 6ba06a9f6f6c1f34bbbf7e5c982ba44af17b1b34f70ccc1ea83c61630d1b51a5

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pymsis-0.3.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fbd930eb3579cb7904853f7c824e9cd56ba783e247e0d96b2fb71ceb43f72b12
MD5 cae4175e285334f881a0cb97d16052c5
BLAKE2b-256 0230b025880470b2dfaebf5c082f305d3ee140728c7eb5bd7ded5d705f4769d5

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 39a1b60808862caa9a37ece963b8ac02531aedb0abcfd272435e5dcf0c98b178
MD5 3c6cace40e2a6fd09d2ea6ed0d8c45bb
BLAKE2b-256 da22af618a2a487687f4ad7fcf5fe2e630eeb7ad732101a18efb79e0c53cefb5

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0a1cba312ce2e695edda9e419e9058241150683fc12dc948278b8eb3410a419
MD5 476216525883210db2ac1437a34c322e
BLAKE2b-256 38d96e0d5a8b4117882604c82742b809f89f9f695d23e1e4553178cd1b89877f

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9cf0af0df89c98d6d4d076b8a4f7e2c7c648f9f115a8bbefcf09ee7b5b8361e9
MD5 d7a34da36b224b074cca6d22b901d66f
BLAKE2b-256 44ac1524db32185089a7792844ea999eeee58545db0c78d85d7f38c3cb718012

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4bd9c6543bd3ed9cddc72ddb2fa84ca25ddf0f66960abd6a5ab53363e67ef2e2
MD5 e49f6919bc1ea3bd1c4bbf61e7abaf73
BLAKE2b-256 42da35f7ebe2294e429a21b0a873e0e8975356a4e2f3dc819d39e4c65b1ca533

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pymsis-0.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7736952e334a3346ff6aa19fec738c532a91bd0589d1f7419dee305fca26f944
MD5 074aae0d7efdda40247240aa1bb97f2d
BLAKE2b-256 709f339e21eb8a18bb7c405898eedef6b93766ead5c9b77b666c7bcac4d788e4

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for pymsis-0.3.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 524b8f5b5c553bb0b79727e70b8aa51f50fdfe4d9589f9b938cfc1b287b435a5
MD5 0663322a6df7c35b714c984a635470da
BLAKE2b-256 fafa489035ee07899066aabefc000b48a42d98de351cb1d6fe1ed67f633b6885

See more details on using hashes here.

File details

Details for the file pymsis-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pymsis-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for pymsis-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2de23f48540db35c472b5fb63c9e9e3445fbf8116726811b03efdb356138efe4
MD5 76ceb621dacc44f1ad7eeb3c941bf887
BLAKE2b-256 3a5cf3bb43f154c5fd6373211bd47d5923508773985e879b3056736329e62719

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page