Skip to main content

A small Python library for the NLP Interchange Format (NIF)

Project description

The NLP Interchange Format (NIF) is an RDF/OWL-based format that aims to achieve interoperability between Natural Language Processing (NLP) tools, language resources and annotations. It offers a standard representation of annotated texts for tasks such as Named Entity Recognition or Entity Linking. It is used by GERBIL to run reproducible evaluations of annotators.

This Python library can be used to serialize and deserialized annotated corpora in NIF.

Documentation

NIF Documentation

Supported NIF versions

NIF 2.1, serialized in any of the formats supported by rdflib

Overview

This library is revolves around three core classes: * a NIFContext is a document (a string); * a NIFPhrase is the annotation of a snippet of text (usually a phrase) in a document; * a NIFCollection is a set of documents, which constitutes a collection. In NIF, each of these objects is identified by a URI, and their attributes and relations are encoded by RDF triples between these URIs. This library abstracts away the encoding by letting you manipulate collections, contexts and phrases as plain Python objects.

Quickstart

  1. Import and create a collection

from pynif import NIFCollection

collection = NIFCollection(uri="http://freme-project.eu")
  1. Create a context

context = collection.add_context(
    uri="http://freme-project.eu/doc32",
    mention="Diego Maradona is from Argentina.")
  1. Create entries for the entities

context.add_phrase(
    beginIndex=0,
    endIndex=14,
    taClassRef=['http://dbpedia.org/ontology/SportsManager', 'http://dbpedia.org/ontology/Person', 'http://nerd.eurecom.fr/ontology#Person'],
    score=0.9869992701528016,
    annotator='http://freme-project.eu/tools/freme-ner',
    taIdentRef='http://dbpedia.org/resource/Diego_Maradona',
    taMsClassRef='http://dbpedia.org/ontology/SoccerManager')

context.add_phrase(
    beginIndex=23,
    endIndex=32,
    taClassRef=['http://dbpedia.org/ontology/PopulatedPlace', 'http://nerd.eurecom.fr/ontology#Location',
    'http://dbpedia.org/ontology/Place'],
    score=0.9804963628413852,
    annotator='http://freme-project.eu/tools/freme-ner',
    taMsClassRef='http://dbpedia.org/resource/Argentina')
  1. Finally, get the output with the format that you need

generated_nif = collection.dumps(format='turtle')
print(generated_nif)

You will obtain the NIF representation as a string:

<http://freme-project.eu> a nif:ContextCollection ;
    nif:hasContext <http://freme-project.eu/doc32> ;
    ns1:conformsTo <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/2.1> .

<http://freme-project.eu/doc32> a nif:Context,
        nif:OffsetBasedString ;
    nif:beginIndex "0"^^xsd:nonNegativeInteger ;
    nif:endIndex "33"^^xsd:nonNegativeInteger ;
    nif:isString "Diego Maradona is from Argentina." .

<http://freme-project.eu/doc32#offset_0_14> a nif:OffsetBasedString,
        nif:Phrase ;
    nif:anchorOf "Diego Maradona" ;
    nif:beginIndex "0"^^xsd:nonNegativeInteger ;
    nif:endIndex "14"^^xsd:nonNegativeInteger ;
    nif:referenceContext <http://freme-project.eu/doc32> ;
    nif:taMsClassRef <http://dbpedia.org/ontology/SoccerManager> ;
    itsrdf:taAnnotatorsRef <http://freme-project.eu/tools/freme-ner> ;
    itsrdf:taClassRef <http://dbpedia.org/ontology/Person>,
        <http://dbpedia.org/ontology/SportsManager>,
        <http://nerd.eurecom.fr/ontology#Person> ;
    itsrdf:taConfidence 9.869993e-01 ;
    itsrdf:taIdentRef <http://dbpedia.org/resource/Diego_Maradona> .

<http://freme-project.eu/doc32#offset_23_32> a nif:OffsetBasedString,
        nif:Phrase ;
    nif:anchorOf "Argentina" ;
    nif:beginIndex "23"^^xsd:nonNegativeInteger ;
    nif:endIndex "32"^^xsd:nonNegativeInteger ;
    nif:referenceContext <http://freme-project.eu/doc32> ;
    nif:taMsClassRef <http://dbpedia.org/resource/Argentina> ;
    itsrdf:taAnnotatorsRef <http://freme-project.eu/tools/freme-ner> ;
    itsrdf:taClassRef <http://dbpedia.org/ontology/Place>,
        <http://dbpedia.org/ontology/PopulatedPlace>,
        <http://nerd.eurecom.fr/ontology#Location> ;
    itsrdf:taConfidence 9.804964e-01 .
  1. You can then parse it back:

parsed_collection = NIFCollection.loads(generated_nif, format='turtle')

for context in parsed_collection.contexts:
   for phrase in context.phrases:
       print(phrase)

Issues

If you have any problems with or questions about this library, please contact us through a GitHub issue.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pynif-0.1.1.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

pynif-0.1.1-py2.py3-none-any.whl (16.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pynif-0.1.1.tar.gz.

File metadata

  • Download URL: pynif-0.1.1.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15+

File hashes

Hashes for pynif-0.1.1.tar.gz
Algorithm Hash digest
SHA256 0ef1a29bac67794c4cabadec7edda39bbdecbefb414cf07881c8bed6f05de249
MD5 817462b9b0719cc767e5ebcce2d7101e
BLAKE2b-256 6d1af2024be25536f54773a2a6f86cc286b2ef2913b498a14840e7f9e1ecfa9c

See more details on using hashes here.

File details

Details for the file pynif-0.1.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pynif-0.1.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 16.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.3 requests-toolbelt/0.8.0 tqdm/4.29.1 CPython/2.7.15+

File hashes

Hashes for pynif-0.1.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ebeba4f80e6eb3699c3292fabfb7a0cd86f054c3117ec1c519e3b5c458cc2650
MD5 b5dbffb1a8c5ae0cf5570d031b3ed239
BLAKE2b-256 3f754c225b0cfa7a24415f02bb5ebe41a609eb406588d09bdfe835e5e1c71179

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page