Skip to main content

Neuroscout API wrapper

Project description

pyNS 🌲

Build Status codecov

The Neuroscout API wrapper for Python

Overview

py-ns is a python package to easily interact with the Neuroscout API.

For more API documentation, check out the Swagger API Docs: http://alpha.neuroscout.org/swagger-ui/

Installation

py-ns is supported in Python 3.4+ Use pip to install it from github:

pip install --upgrade https://github.com/neuroscout/pyns/archive/master.zip

Quickstart

We are assuming you already have valid Neuroscout API credentials (and if you dont, sign up at: alpha.neuroscout.org)

First, instantiate a Neuroscout API Client object:

from pyns import Neuroscout
neuroscout = Neuroscout(username='USERNAME', password='PASSWORD')

With the neuroscout instance, you can interact with the API. All of the major routes are linked to the main neuroscout object, and return requests Response objects.

For example we can retrieve our user profile:

>>> neuroscout.user.get().json()
{'email': 'user@example.com',
 'analyses': [ {'description': 'Does the brain care about language?',
  'hash_id': 'RZd',
  'modified_at': '2018-08-09T23:3',
  'name': 'My new analysis',
  'status': 'PASSED'}]]}

Or query various endpoints, such as datasets:

>>> neuroscout.datasets.get().json()
[{'description': {'Acknowledgements': '',
   'Authors': ['Tomoyasu Horikawa', 'Yukiyasu Kamitani'],
   'DatasetDOI': '',
   'Funding': '',
   'HowToAcknowledge': '',
   'License': '',
   'Name': 'Generic Object Decoding (fMRI on ImageNet)',
   'ReferencesAndLinks': ['Horikawa & Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications volume 8:15037. doi:10.1038/ncomms15037']},
  'id': 1,
  'name': 'generic_object_decoding',
...
  'tasks': [{'id': 8, 'name': 'life'}]}]

For example, we could use this to get the first predictor associated with a dataset:

>>> first = neuroscout.predictors.get(dataset_id=5).json()[0]
{'description': 'Bounding polygon around face. y coordinate for vertex 1',
 'extracted_feature': {'created_at': '2018-04-12 00:44:14.868349',
  'description': 'Bounding polygon around face. y coordinate for vertex 1',
  'extractor_name': 'GoogleVisionAPIFaceExtractor',
  'id': 102,
  'modality': None},
 'id': 197,
 'name': 'boundingPoly_vertex1_y',
 'source': 'extracted'}

And get the predictor-events associated with that predictor:

>>> neuroscout.predictor_events.get(predictor_id=first['id']).json()[0:2]
[{'duration': 9.0,
  'id': '1050781',
  'onset': 114.0,
  'predictor_id': 197,
  'run_id': 2,
  'value': '13'},
 {'duration': 9.0,
  'id': '1050782',
  'onset': 114.0,
  'predictor_id': 197,
  'run_id': 26,
  'value': '13'}]

Testing

We use pytest for testing, and betamax to record HTTP requests used in test into cassettes.

To re-run tests locally set theUSER_TEST_EMAIL and USER_TEST_PWD environment variables with valid API credentials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyns-0.0.1.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

pyns-0.0.1-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file pyns-0.0.1.tar.gz.

File metadata

  • Download URL: pyns-0.0.1.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.2

File hashes

Hashes for pyns-0.0.1.tar.gz
Algorithm Hash digest
SHA256 fb88cc4ad6673e10cd76efd1d179242bd3316683f7330e8cbd834f376b90bd94
MD5 376933ce0ce729ce29d945eb55127549
BLAKE2b-256 8e0e873eeaa48d197d040011c6a69b592cf21be910868b3836febfd7046a7a2e

See more details on using hashes here.

Provenance

File details

Details for the file pyns-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: pyns-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.2

File hashes

Hashes for pyns-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e961c3d58b92de3cf85bd335cd8bbc000601452d068c19dc759ea2111e9b6c63
MD5 be6fd410816adcf0dcc97b6e3134289e
BLAKE2b-256 57fc24af8a04c51a590695b3ab58ce76221c063b799ad25b5df6fca561688318

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page