Skip to main content

Neuroscout API wrapper

Project description

pyNS 🌲

Build Status codecov

The Neuroscout API wrapper for Python

Overview

pyNS is a python package to easily interact with the Neuroscout API.

For more API documentation, check out the Swagger API Docs: http://neuroscout.org/swagger-ui/

Installation

pyNS is supported in Python 3.4+ Use pip to install it:

pip install pyns

Quickstart

For a tutorial on how to build an analysis, see this Jupyter Notebook: https://github.com/neuroscout/pyNS/blob/master/examples/Tutorial.ipynb

We are assuming you already have valid Neuroscout API credentials (and if you dont, sign up at: neuroscout.org)

First, instantiate a Neuroscout API Client object:

from pyns import Neuroscout
neuroscout = Neuroscout(username='USERNAME', password='PASSWORD')

With the neuroscout instance, you can interact with the API. All of the major routes are linked to the main neuroscout object, and return requests Response objects.

For example we can retrieve our user profile:

>>> neuroscout.user.get()
{'email': 'user@example.com',
 'analyses': [ {'description': 'Does the brain care about language?',
  'hash_id': 'RZd',
  'modified_at': '2018-08-09T23:3',
  'name': 'My new analysis',
  'status': 'PASSED'}]]}

Or query various endpoints, such as datasets:

>>> neuroscout.datasets.get()
[{'description': {'Acknowledgements': '',
   'Authors': ['Tomoyasu Horikawa', 'Yukiyasu Kamitani'],
   'DatasetDOI': '',
   'Funding': '',
   'HowToAcknowledge': '',
   'License': '',
   'Name': 'Generic Object Decoding (fMRI on ImageNet)',
   'ReferencesAndLinks': ['Horikawa & Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications volume 8:15037. doi:10.1038/ncomms15037']},
  'id': 1,
  'name': 'generic_object_decoding',
...
  'tasks': [{'id': 8, 'name': 'life'}]}]

For example, we could use this to get the first predictor associated with a dataset:

>>> first = neuroscout.predictors.get(dataset_id=5)[0]
{'description': 'Bounding polygon around face. y coordinate for vertex 1',
 'extracted_feature': {'created_at': '2018-04-12 00:44:14.868349',
  'description': 'Bounding polygon around face. y coordinate for vertex 1',
  'extractor_name': 'GoogleVisionAPIFaceExtractor',
  'id': 102,
  'modality': None},
 'id': 197,
 'name': 'boundingPoly_vertex1_y',
 'source': 'extracted'}

And get the predictor-events associated with that predictor:

>>> neuroscout.predictor_events.get(predictor_id=first['id'])[0:2]
[{'duration': 9.0,
  'id': '1050781',
  'onset': 114.0,
  'predictor_id': 197,
  'run_id': 2,
  'value': '13'},
 {'duration': 9.0,
  'id': '1050782',
  'onset': 114.0,
  'predictor_id': 197,
  'run_id': 26,
  'value': '13'}]

Testing

We use pytest for testing, and betamax to record HTTP requests used in test into cassettes.

To re-run tests locally set theUSER_TEST_EMAIL and USER_TEST_PWD environment variables with valid API credentials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyns-0.3.2.tar.gz (12.8 kB view details)

Uploaded Source

Built Distribution

pyns-0.3.2-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file pyns-0.3.2.tar.gz.

File metadata

  • Download URL: pyns-0.3.2.tar.gz
  • Upload date:
  • Size: 12.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.6.8

File hashes

Hashes for pyns-0.3.2.tar.gz
Algorithm Hash digest
SHA256 b1d8aac39ae8771e69b7d9c7ee09cc2851b0b785118cb82c67c814f5f5982029
MD5 171006a8219e831075dd9369c878115c
BLAKE2b-256 93c8d868d67713fba31bd4e17df9b1457b02aa5a28cdd59ad1a630a71ca5fe94

See more details on using hashes here.

Provenance

File details

Details for the file pyns-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: pyns-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.7.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.6.8

File hashes

Hashes for pyns-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6b78a778d459efe53991c5a51b4f8ca85b9e16e20d31a1ab210570fd9022aa8e
MD5 26f5aff7ce8a7c725f6a265baded6984
BLAKE2b-256 8f5655cd90f68805c03a75e0b75bcf076cf7f4d56087b135bca49a03ffab0822

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page