Skip to main content

Neuroscout API wrapper

Project description

pyNS 🌲

Python package codecov

The Neuroscout API wrapper for Python

Overview

pyNS is a python package to easily interact with the Neuroscout API.

For more API documentation, check out the Swagger API Docs: http://neuroscout.org/swagger-ui/

Installation

pyNS is supported in Python 3.4+ Use pip to install it:

pip install pyns

Quickstart

For a tutorial on how to build an analysis, see this Jupyter Notebook: https://github.com/neuroscout/pyNS/blob/master/examples/Tutorial.ipynb

We are assuming you already have valid Neuroscout API credentials (and if you dont, sign up at: neuroscout.org)

First, instantiate a Neuroscout API Client object:

from pyns import Neuroscout
neuroscout = Neuroscout(username='USERNAME', password='PASSWORD')

With the neuroscout instance, you can interact with the API. All of the major routes are linked to the main neuroscout object, and return requests Response objects.

For example we can retrieve our user profile:

>>> neuroscout.user.get()
{'email': 'user@example.com',
 'analyses': [ {'description': 'Does the brain care about language?',
  'hash_id': 'RZd',
  'modified_at': '2018-08-09T23:3',
  'name': 'My new analysis',
  'status': 'PASSED'}]]}

Or query various endpoints, such as datasets:

>>> neuroscout.datasets.get()
[{'description': {'Acknowledgements': '',
   'Authors': ['Tomoyasu Horikawa', 'Yukiyasu Kamitani'],
   'DatasetDOI': '',
   'Funding': '',
   'HowToAcknowledge': '',
   'License': '',
   'Name': 'Generic Object Decoding (fMRI on ImageNet)',
   'ReferencesAndLinks': ['Horikawa & Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications volume 8:15037. doi:10.1038/ncomms15037']},
  'id': 1,
  'name': 'generic_object_decoding',
...
  'tasks': [{'id': 8, 'name': 'life'}]}]

For example, we could use this to get the first predictor associated with a dataset:

>>> first = neuroscout.predictors.get(dataset_id=5)[0]
{'description': 'Bounding polygon around face. y coordinate for vertex 1',
 'extracted_feature': {'created_at': '2018-04-12 00:44:14.868349',
  'description': 'Bounding polygon around face. y coordinate for vertex 1',
  'extractor_name': 'GoogleVisionAPIFaceExtractor',
  'id': 102,
  'modality': None},
 'id': 197,
 'name': 'boundingPoly_vertex1_y',
 'source': 'extracted'}

And get the predictor-events associated with that predictor:

>>> neuroscout.predictor_events.get(predictor_id=first['id'])[0:2]
[{'duration': 9.0,
  'id': '1050781',
  'onset': 114.0,
  'predictor_id': 197,
  'run_id': 2,
  'value': '13'},
 {'duration': 9.0,
  'id': '1050782',
  'onset': 114.0,
  'predictor_id': 197,
  'run_id': 26,
  'value': '13'}]

Testing

We use pytest for testing, and betamax to record HTTP requests used in test into cassettes.

To re-run tests locally set theUSER_TEST_EMAIL and USER_TEST_PWD environment variables with valid API credentials.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyns-0.4.7.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

pyns-0.4.7-py3-none-any.whl (18.3 kB view details)

Uploaded Python 3

File details

Details for the file pyns-0.4.7.tar.gz.

File metadata

  • Download URL: pyns-0.4.7.tar.gz
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for pyns-0.4.7.tar.gz
Algorithm Hash digest
SHA256 5bf2ff820364c4419e11d587acc39cdfd9d6d29ff3ff36e2317603b48c51a38a
MD5 eb3eae1e95676a3c8730f029edccc60d
BLAKE2b-256 64ee3fed946b8db0a03dfcdbf2e5e78877245dc335841ca0679d39ce1aa58b95

See more details on using hashes here.

Provenance

File details

Details for the file pyns-0.4.7-py3-none-any.whl.

File metadata

  • Download URL: pyns-0.4.7-py3-none-any.whl
  • Upload date:
  • Size: 18.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for pyns-0.4.7-py3-none-any.whl
Algorithm Hash digest
SHA256 66313994df874df8f0f78b6fc8356baf773cf6e8c5bb0773ddabb59ab1b2bbe6
MD5 3e895497683cb7058532ed577c895e56
BLAKE2b-256 0d65f6932fb434daf3548c1f2d41898d09d644a0a137dc54d04d4cd6969d1c2d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page