Skip to main content

Vectorized spatial vector file format I/O using GDAL/OGR

Project description

pyogrio - Vectorized spatial vector file format I/O using GDAL/OGR

Pyogrio provides a GeoPandas-oriented API to OGR vector data sources, such as ESRI Shapefile, GeoPackage, and GeoJSON. Vector data sources have geometries, such as points, lines, or polygons, and associated records with potentially many columns worth of data.

Pyogrio uses a vectorized approach for reading and writing GeoDataFrames to and from OGR vector data sources in order to give you faster interoperability. It uses pre-compiled bindings for GDAL/OGR so that the performance is primarily limited by the underlying I/O speed of data source drivers in GDAL/OGR rather than multiple steps of converting to and from Python data types within Python.

We have seen >5-10x speedups reading files and >5-20x speedups writing files compared to using non-vectorized approaches (Fiona and current I/O support in GeoPandas).

You can read these data sources into GeoDataFrames, read just the non-geometry columns into Pandas DataFrames, or even read non-spatial data sources that exist alongside vector data sources, such as tables in a ESRI File Geodatabase, or antiquated DBF files.

Pyogrio also enables you to write GeoDataFrames to at least a few different OGR vector data source formats.

Read the documentation for more information: https://pyogrio.readthedocs.io.

WARNING: Pyogrio is still at an early version and the API is subject to substantial change. Please see CHANGES.

Requirements

Supports Python 3.8 - 3.11 and GDAL 3.1.x - 3.6.x.

Reading to GeoDataFrames requires geopandas>=0.8 with pygeos or geopandas>=0.12 with shapely>=2.

Additionally, installing pyarrow in combination with GDAL 3.6+ enables a further speed-up when specifying use_arrow=True.

Installation

Pyogrio is currently available on conda-forge and PyPI for Linux, MacOS, and Windows.

Please read the installation documentation for more information.

Supported vector formats

Pyogrio supports some of the most common vector data source formats (provided they are also supported by GDAL/OGR), including ESRI Shapefile, GeoPackage, GeoJSON, and FlatGeobuf.

Please see the list of supported formats for more information.

Getting started

Please read the introduction for more information and examples to get started using Pyogrio.

You can also check out the the API documentation for full details on using the API.

Credits

This project is made possible by the tremendous efforts of the GDAL, Fiona, and Geopandas communities.

  • Core I/O methods and supporting functions adapted from Fiona
  • Inspired by Fiona PR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyogrio-0.6.0.tar.gz (306.3 kB view details)

Uploaded Source

Built Distributions

pyogrio-0.6.0-cp311-cp311-win_amd64.whl (14.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyogrio-0.6.0-cp311-cp311-manylinux_2_28_aarch64.whl (20.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

pyogrio-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyogrio-0.6.0-cp311-cp311-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyogrio-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyogrio-0.6.0-cp310-cp310-win_amd64.whl (14.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyogrio-0.6.0-cp310-cp310-manylinux_2_28_aarch64.whl (20.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

pyogrio-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyogrio-0.6.0-cp310-cp310-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyogrio-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyogrio-0.6.0-cp39-cp39-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyogrio-0.6.0-cp39-cp39-manylinux_2_28_aarch64.whl (20.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

pyogrio-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyogrio-0.6.0-cp39-cp39-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyogrio-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyogrio-0.6.0-cp38-cp38-win_amd64.whl (14.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyogrio-0.6.0-cp38-cp38-manylinux_2_28_aarch64.whl (20.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

pyogrio-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyogrio-0.6.0-cp38-cp38-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyogrio-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl (15.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyogrio-0.6.0.tar.gz.

File metadata

  • Download URL: pyogrio-0.6.0.tar.gz
  • Upload date:
  • Size: 306.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyogrio-0.6.0.tar.gz
Algorithm Hash digest
SHA256 4b8f0666701766a7ac3774b6f1c5f8dd5d72f1ed18cb319790835d8f8d073ce5
MD5 e30e996af3f3d49efcbd9258135b209a
BLAKE2b-256 1037f103377d1c83bd93fc8b0ae976592fff8623df2e49b92fb36f4b9b91f39f

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyogrio-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cb74d98dbd28a29cb22448ef9ba76fd5c27e8a30047ab8b627036e3d6ce16977
MD5 fbccb1d34a57745e89a6aedb1c8e04e0
BLAKE2b-256 809be74fddb8e7c8c1838fa0f43834dbf67cb56c4e47f02853fa60744aebc98b

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp311-cp311-manylinux_2_28_aarch64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.11, manylinux: glibc 2.28+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.9.7

File hashes

Hashes for pyogrio-0.6.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 358adfeb96e51c43a4db8b68e883fb02032daf0bfa9b202352dfad4ef9c18f23
MD5 ae87bec40e0b569096896b9abfbdaa83
BLAKE2b-256 8f55b8afecf57bbd3c7886d132a297aac7e67a04bee5c2b7909515b878f88eeb

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26d228f04e7a91d6d55c37d25a26365580d2971c06ab5a0dae3608be49a978a0
MD5 d9b64d8d50942afc1111a20461e9e167
BLAKE2b-256 0d668dd3ce1daa95430f07b859243efa3ed8d88d3cc54e8a39ef7be93b6c5ed7

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be39bae3b527cc0f60843aa6b33aac461d934d04200f1c16d70f0606344bd821
MD5 ec60d85805d09853dba9e22c41f251a4
BLAKE2b-256 ffc25b5931272e78f9c734f855e769e8ac7322b8716377d9b358d6b5b48c7d8b

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc42d365b82d6b34b3e38fa4822719df151ad68bd20c09c942760c0114b42d29
MD5 988875b424d1ed17be3975eb5f90f27a
BLAKE2b-256 b3af43b7e2a3a46206211b9dafb135ebbe5dec8d0498540154fa5dd2fab3f86b

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyogrio-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5970d3f537e4336ac779b8339255898ac5c48bd7697a88a29e6b9454030b9edb
MD5 c031950910a88469e80c112bd19a6966
BLAKE2b-256 75381c55c229a7d7c4b32925bf0dfb554646677255673fa41cd081504c1d24f9

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp310-cp310-manylinux_2_28_aarch64.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.10, manylinux: glibc 2.28+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.9.7

File hashes

Hashes for pyogrio-0.6.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 a170247e964b1848700f221a65019316639861d553e2bb4f85cb7ea1fb7c7a82
MD5 f020563b9091354beb2870a317f9bc3f
BLAKE2b-256 16e9df12d5f4c10c58a0fc30aa194c1a330f64b366db6f368ffb862c4aae5180

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 535d202f37c812f1f5870790e68b4454d26ef563a3579df4a4f804140904029d
MD5 c5f53b305f2cf5395565956f6a25f1cd
BLAKE2b-256 d9f653f6de45e5aa3330396c008c99a0655e8adb4bc92351e6a0e7119ef38c50

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb6ea736e886456ae343856bc49c3a57d19f35b4383c9c06966f74f55670987a
MD5 0117b6b2cd88b8f65d48b3856a8a8e58
BLAKE2b-256 601052cca091f6ae91b4683f0235014ccea1a0a0d2216537fd949c8ac544cdeb

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfaa34854bc5c5d736a92413a9edf3fa396b84dd47a6a85f08fe607fb0f76688
MD5 3afef97977ae8e85c989d328d3147a4d
BLAKE2b-256 d35b64d79554d8131d1a0b4b186b1528fa5cd9d21e1d28182ede66230dd7733d

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyogrio-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a10acbf6e65bdb74095c6f0cbf89c1016ec900fa81a6795aeec42e3131a39990
MD5 99c73920b98f03677af3374133a496c9
BLAKE2b-256 739020465021d617654aa83d98e809a55bc914e27eee07125438044cdc8887e4

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp39-cp39-manylinux_2_28_aarch64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.28+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.9.7

File hashes

Hashes for pyogrio-0.6.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 924d3c041277f1082eb398d4576a89de76fd2fa9b1fc2403211d0c93c588cf3d
MD5 dd65f29d6b0d0f50a25bdf2224780a5b
BLAKE2b-256 1f1f39c5d842077ab7c87c62da8add220652a9565cc0e261751e9efb4293802e

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da58587968d48d545ef0441d44576959a09edb34e71db82c56135673e1e92038
MD5 5fc5cd99bb7bc3a751e08e1f4a9316f2
BLAKE2b-256 d44cc8dd8043bba957bb427c86441c906b9099086388ba9b388d8c3c91dfb548

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dbc3bf0592ab2ea23cdc8497812dabdbce515068c74bc8eb9cb00500e6bf2e4
MD5 c66dcf415893bf725c8336db916e037d
BLAKE2b-256 45be649f90165e0fa02bebc64632f035b1a3b7c28a0e684c5fd9da368ede5c59

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 565aba138791032370a5174864db3b078e2b10e66e4e180e9271d69e47dd5d49
MD5 ff840b40dd0c64ee08214ce38069d4e7
BLAKE2b-256 225ad58bf1adc862e6754b00db274b1493ad1c9aa371432f95de72f4a56a4077

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyogrio-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fadc6b9dbd59971ad0fe80d35b61a9c60bd0e2e55510ee146b7d48b6e4c8d101
MD5 b27ef917eed6debd6337e64a8ad4d781
BLAKE2b-256 d96bfb8705f52f2fc5acfa6899232f915645cd6654e8035f1befdd8eb878d5d9

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

  • Download URL: pyogrio-0.6.0-cp38-cp38-manylinux_2_28_aarch64.whl
  • Upload date:
  • Size: 20.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.28+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.9.7

File hashes

Hashes for pyogrio-0.6.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2bfa422ccadd561245e753b67c0e5dddb700a69ec1362ee45d2f2c242ffd72a1
MD5 c5111b434d244eb29212f3e49c051b6c
BLAKE2b-256 57aa6bd9b7ad1d029b39ef8ed36a7b244726cc8445e0d4d42a3cffa97addbb20

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd507637fb1bdeb7733304a12c5c629404c5d90e50ad42eb339804f21c3ae9c8
MD5 ec89001dd19ab5882fc704ba8e4658ad
BLAKE2b-256 93d486c9b0a212d510612b389069b1a57b13cab695286ec754c5c713bd226d59

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d9e9895603a55c91656f7304a54058e1cce9122e8a4cef0c19a2aca13e0809f3
MD5 c2daaa61529fd59312b9c86d4009c843
BLAKE2b-256 28132eeee1aff21bf3824714440efe026f2c2c875c4c4e979a524f54bd32087a

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc919162424b25eac9c662fa726ae8b8e23d6afad4e4a719d241edcfda08905c
MD5 c7c346e3656930e5c5dde73b35036ec2
BLAKE2b-256 585f3083cd178d4fb90629dc17660186c3423528580213d1eb41a9e69ff3df82

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page