Skip to main content

Vectorized spatial vector file format I/O using GDAL/OGR

Project description

pyogrio - Vectorized spatial vector file format I/O using GDAL/OGR

Pyogrio provides a GeoPandas-oriented API to OGR vector data sources, such as ESRI Shapefile, GeoPackage, and GeoJSON. Vector data sources have geometries, such as points, lines, or polygons, and associated records with potentially many columns worth of data.

Pyogrio uses a vectorized approach for reading and writing GeoDataFrames to and from OGR vector data sources in order to give you faster interoperability. It uses pre-compiled bindings for GDAL/OGR so that the performance is primarily limited by the underlying I/O speed of data source drivers in GDAL/OGR rather than multiple steps of converting to and from Python data types within Python.

We have seen >5-10x speedups reading files and >5-20x speedups writing files compared to using non-vectorized approaches (Fiona and current I/O support in GeoPandas).

You can read these data sources into GeoDataFrames, read just the non-geometry columns into Pandas DataFrames, or even read non-spatial data sources that exist alongside vector data sources, such as tables in a ESRI File Geodatabase, or antiquated DBF files.

Pyogrio also enables you to write GeoDataFrames to at least a few different OGR vector data source formats.

Read the documentation for more information: https://pyogrio.readthedocs.io.

WARNING: Pyogrio is still at an early version and the API is subject to substantial change. Please see CHANGES.

Requirements

Supports Python 3.8 - 3.11 and GDAL 3.4.x - 3.7.x.

Reading to GeoDataFrames requires geopandas>=0.12 with shapely>=2.

Additionally, installing pyarrow in combination with GDAL 3.6+ enables a further speed-up when specifying use_arrow=True.

Installation

Pyogrio is currently available on conda-forge and PyPI for Linux, MacOS, and Windows.

Please read the installation documentation for more information.

Supported vector formats

Pyogrio supports some of the most common vector data source formats (provided they are also supported by GDAL/OGR), including ESRI Shapefile, GeoPackage, GeoJSON, and FlatGeobuf.

Please see the list of supported formats for more information.

Getting started

Please read the introduction for more information and examples to get started using Pyogrio.

You can also check out the the API documentation for full details on using the API.

Credits

This project is made possible by the tremendous efforts of the GDAL, Fiona, and Geopandas communities.

  • Core I/O methods and supporting functions adapted from Fiona
  • Inspired by Fiona PR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyogrio-0.7.2.tar.gz (327.9 kB view details)

Uploaded Source

Built Distributions

pyogrio-0.7.2-cp312-cp312-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyogrio-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyogrio-0.7.2-cp312-cp312-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyogrio-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyogrio-0.7.2-cp311-cp311-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyogrio-0.7.2-cp311-cp311-manylinux_2_28_aarch64.whl (20.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

pyogrio-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyogrio-0.7.2-cp311-cp311-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyogrio-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyogrio-0.7.2-cp310-cp310-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyogrio-0.7.2-cp310-cp310-manylinux_2_28_aarch64.whl (20.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

pyogrio-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyogrio-0.7.2-cp310-cp310-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyogrio-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyogrio-0.7.2-cp39-cp39-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyogrio-0.7.2-cp39-cp39-manylinux_2_28_aarch64.whl (20.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

pyogrio-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyogrio-0.7.2-cp39-cp39-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyogrio-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyogrio-0.7.2-cp38-cp38-win_amd64.whl (14.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyogrio-0.7.2-cp38-cp38-manylinux_2_28_aarch64.whl (20.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

pyogrio-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyogrio-0.7.2-cp38-cp38-macosx_11_0_arm64.whl (14.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyogrio-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyogrio-0.7.2.tar.gz.

File metadata

  • Download URL: pyogrio-0.7.2.tar.gz
  • Upload date:
  • Size: 327.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyogrio-0.7.2.tar.gz
Algorithm Hash digest
SHA256 33afb7d211c6434613f24174722347a5cb11d22a212f28c817f67c89d30d0c0d
MD5 8e2831f2763a269da3d5d0e8150a4c4b
BLAKE2b-256 9d8e39281ad6012c7c1112d5f894dcfd5ac5ac0f09960e7f11048f35c2af1b3c

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.7.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyogrio-0.7.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1b7197c72f034ac7187da2a8d50a063a5f1256aab732b154f11f887a7652dc3d
MD5 ee63d296557b6f50c4e9291532cd8ac7
BLAKE2b-256 1a7ddf41568329d2d75414855da07999fb8ffc17db97d068870b3fb6ab8b6c81

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31112bb0b6a4a3f80ec3252d7eeb7be81045860d49fd76e297c073759450652b
MD5 5e295aecc6dea74347a02a273e5a54e3
BLAKE2b-256 cde6a16293c059087ff0c99a8c987eef8fcda33b1a913bf64526a693db0ca946

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f2ff58184020da39540a2f5d4a5412005a01b0c4cd03c7b8294bc670d1f3fe50
MD5 5938c0ee2283ec93a7aacee489711f92
BLAKE2b-256 18d5d2d6a9bfc57ec9b588ca028aef3a1a62f010bbec3101253cc6dd1ec89b51

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73577fecebeecf0d06e78c1a4bddd460a4d57c6d918affab7594c0bc72f5fa14
MD5 1f81e8cfe880ae25c56ef12b1f7d4b83
BLAKE2b-256 aef0446d3b1c407bd2c042b79d96df775b763ccde2c803d26031c0f9d80e017a

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.7.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyogrio-0.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 33ae5aafcf3a557e107a33f5b3e878750d2e467b8cc911dc4bf261c1a602b534
MD5 9c0e76eb78f9c46a00439944224b4830
BLAKE2b-256 aa770fff047f6286bc218045fdedbde85e28e5ac7dedb06393f25a38d0a8c7e8

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 234b0d1d22e9680229b0618c25077a0cb2428cbbc2939b4bb9bdd8ee77e0f3e0
MD5 098925fbf1b1b37da4743f617907c2a7
BLAKE2b-256 046be4d94d892a42c6629f2be32acaf82f9df5f6a6d0db62cb483c177acf0281

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a23136d1bffa9d811263807b850c6e9854201710276f09de650131e89f2486aa
MD5 0c6a380c1ef5d630e6f01fa635bdf566
BLAKE2b-256 8e47b0c8f44e1e1faf06216648748400ac634ef249a248a43a4a2ba5ddf7f54f

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b9a8a4854c7af2c76683ce5666ee765b207901b362576465219d75deb6159821
MD5 9a1ff9dab55366a00a9cd8dd77b8cee7
BLAKE2b-256 f2d2008fedca64c85d91ded2e4d7c7e87da4ffbe0f46c5116728334295b54da7

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5654e7c33442cbd98e7a56f705e160415d7503b2420d724d4f81b8cc88360b3e
MD5 ea9a8bceea38085b62a25d18c4f0c310
BLAKE2b-256 0f87461d7ecba4fc6d57ddabcdc4415ea19a1f15f69a63fef502aab00c7aaa3a

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyogrio-0.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7e2c856961efdc6cb3809b97b49016cbbcee17c8a1e85fc4000b5fcb3cfcb9b1
MD5 c8a6a16ba3a0220abd200115f056801b
BLAKE2b-256 1f0a5ba2bb95d0f959dfc073b0e0d7267598acb84f863825c4219435ae41d964

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 bee556ca305b7e8c68aada259d925c612131205074fb2373badafacbef610b77
MD5 d08ebfc0d7113d4a68015b95a269468a
BLAKE2b-256 791cf83a6186835ec21fc778926b969501603a6c39315a056af9917e06f5d8f4

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 caaf61d473ac207f170082e602ea57c096e8dd4c4be51de58fba96f1a5944096
MD5 e0a69eac28f7d21b77c681c05260f1f0
BLAKE2b-256 7a83087d684acb7e5f07e187e7f1d89f82cfff81f875ab8748961fad2911c7c2

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 860b04ddf23b8c253ceb3621e4b0e0dc0f293eab66cb14f799a5c9f9fe0a882c
MD5 458a3301df08f3252291b67efced22d6
BLAKE2b-256 0bc57d6ee8f892bd4aa3952080d575125ac6ab927e2bfdb064cab5b1e03c7ea8

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba386a02c9b5934c568b40acc95c9863f92075f6990167635e51368976569c66
MD5 0bebefa7f0bc46413b8dcc1befc6c905
BLAKE2b-256 00fc20dd623dc173196cc835e5903ded723ed538a2e8dabdf18936b9b20e7d53

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyogrio-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d5fc2304aeb927564f77caaa4da9a47e2d77a8ceb1c624ea84c505140886b221
MD5 cbd3fecbec5811980861da102b0f1f55
BLAKE2b-256 0907e722593bb7e6f2f0f0e2d9b78ea3b8cf5506730ce12b6abebb9a8c47a1dd

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 892fdab0e1c44c0125254d92928081c14f93ac553f371addc2c9a1d4bde41cad
MD5 80c545962fa01b4b3edc54925ddda298
BLAKE2b-256 13a41ed9fb70a6c60009511ee68f30e9b01efebbb5391a00a2b5837e229bc553

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3001efd5dfee36459d0cfdafbe91ed88fc5ae734353d771cdb75546ef1427735
MD5 829c1688cfe77545e437ad7a056f9331
BLAKE2b-256 f9f99ee39af84740b9368d1be33ef059242d85c3c5b672eaef039a555a58f119

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 be46be43c4148a3ad09da38670411485ec544a51cbd6b7d004a0eca5035023fc
MD5 2ab9fb23c88cebf296394c7a1d6c6cc8
BLAKE2b-256 ae790102b3d0ce953cd0c2da5e177390c0d15497422e4387598c57dffb809fe5

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cc6db2e5dc50dfe23554d10502920eafa0648c365725e552aaa523432a9bf35
MD5 2d23cc0253d405e1d69b2a4fcef6c6a2
BLAKE2b-256 419b6aea3cbd210a2eb9352ef3fd7432813667b419b691480d8fbabb89b4de91

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyogrio-0.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for pyogrio-0.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f219c1edb010d0248891a3d27d15faf17c91cfe69daef84d7471e22e4ed4fcff
MD5 5a96208d5c9efb5ca57efa498b3e438a
BLAKE2b-256 ae7274ec719d741e401fcc9045bec2082364d476f481ce6f0138575c28d9bb45

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 429dcff4c36f0e0a15ba4a20f2d4478b9c6d095e70c4bcc007a536ea420a1a93
MD5 c61e71adde969157c4df7e962c462862
BLAKE2b-256 320c38f7d5e5c81ac3b2863939b4ec744c9c399dcb39d7c525c2439610a649a9

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5feeb7a0da7ee82580f6aa6508a80602413675b99c60c822929e0e8b925e0517
MD5 566d48f95dea3b95876242a8e4a03512
BLAKE2b-256 1657f94a0aca801a58cce1410cc881e099c842bb92a1ba3ddbae350178feae7b

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 436de39f57e8f8cc41682981518b9490d64d3a1c48bf78d415e5747c296790dc
MD5 9d54e6ee5b1bdee200e309b0f998b2ab
BLAKE2b-256 006ba929a97f4455be3bf844d8ff07577b6c9dec004439e4f7a0bed2dec4b823

See more details on using hashes here.

Provenance

File details

Details for the file pyogrio-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyogrio-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e39bb6bfdd74e63ae96acced7297bbe8a157f85c0107f1cbb395d2a937f3a38
MD5 dc49ae888b2d1903ad19d1d012f5c20c
BLAKE2b-256 97513567949bc4d089aa2f00b6451e5bccdd8f3749f5fc2b7d27726698890073

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page