Skip to main content

Data science toolkit support for OmniSciDB

Project description

Jenkins Build Status

This package enables using common Python data science toolkits with OmniSciDB. It brings data frame support on CPU and GPU as well as support for arrow. See the documentation for more.

Quick Install (CPU)

Packages are available on conda-forge and PyPI:

conda install -c conda-forge pyomnisci

pip install pyomnisci

Quick Install (GPU)

We recommend creating a fresh conda 3.7 or 3.8 environment when installing pymapd with GPU capabilities.

To install pymapd and cudf for GPU Dataframe support (conda-only):

conda create -n omnisci-gpu -c rapidsai -c nvidia -c conda-forge \
 -c defaults cudf=0.18 python=3.7 cudatoolkit=11.0 pyomnisci

Documentation

Further documentation for pyomnisci usage is available at: http://pyomnisci.readthedocs.io/

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyomnisci-0.28.1.tar.gz (6.4 MB view details)

Uploaded Source

Built Distribution

pyomnisci-0.28.1-py3-none-any.whl (21.0 kB view details)

Uploaded Python 3

File details

Details for the file pyomnisci-0.28.1.tar.gz.

File metadata

  • Download URL: pyomnisci-0.28.1.tar.gz
  • Upload date:
  • Size: 6.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pyomnisci-0.28.1.tar.gz
Algorithm Hash digest
SHA256 ed4f41ae6b783d46ae728f61d59f79e6e47ac9c60a2e3a72e603fe9c601acfe5
MD5 7c9faf5eb94e12cb017326dd1648fc69
BLAKE2b-256 7de878f9e2054a246e0a58eb2b7400c907560c0e908229c391a5eda60bb758a6

See more details on using hashes here.

Provenance

File details

Details for the file pyomnisci-0.28.1-py3-none-any.whl.

File metadata

  • Download URL: pyomnisci-0.28.1-py3-none-any.whl
  • Upload date:
  • Size: 21.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pyomnisci-0.28.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a703319caa6c78c40dd2ba5107040a96abf1f82c21c068186eb8c60097373123
MD5 5e59dc4cc499e48b76745e13819f9395
BLAKE2b-256 b8d5f01185a41cb54f3a64dee99b62fced0e69ab1769b9fa9394e26a12ca27bd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page