Skip to main content

Python wrapper for OpenCL

Project description

PyOpenCL: Pythonic Access to OpenCL, with Arrays and Algorithms
---------------------------------------------------------------

.. image:: https://gitlab.tiker.net/inducer/pyopencl/badges/master/pipeline.svg
:target: https://gitlab.tiker.net/inducer/pyopencl/commits/master
.. image:: https://badge.fury.io/py/pyopencl.png
:target: http://pypi.python.org/pypi/pyopencl

PyOpenCL lets you access GPUs and other massively parallel compute
devices from Python. It tries to offer computing goodness in the
spirit of its sister project `PyCUDA <http://mathema.tician.de/software/pycuda>`_:

* Object cleanup tied to lifetime of objects. This idiom, often
called
`RAII <http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization>`_
in C++, makes it much easier to write correct, leak- and
crash-free code.

* Completeness. PyOpenCL puts the full power of OpenCL's API at
your disposal, if you wish. Every obscure `get_info()` query and
all CL calls are accessible.

* Automatic Error Checking. All CL errors are automatically
translated into Python exceptions.

* Speed. PyOpenCL's base layer is written in C++, so all the niceties
above are virtually free.

* Helpful and complete `Documentation <http://documen.tician.de/pyopencl>`_
as well as a `Wiki <http://wiki.tiker.net/PyOpenCL>`_.

* Liberal license. PyOpenCL is open-source under the
`MIT license <http://en.wikipedia.org/wiki/MIT_License>`_
and free for commercial, academic, and private use.

* Broad support. PyOpenCL was tested and works with Apple's, AMD's, and Nvidia's
CL implementations.

Simple 4-step `install instructions <https://documen.tician.de/pyopencl/misc.html#installation>`_
using Conda on Linux and macOS (that also install a working OpenCL implementation!)
can be found in the `documentation <https://documen.tician.de/pyopencl/>`_.

What you'll need if you do *not* want to use the convenient instructions above and
instead build from source:

* gcc/g++ new enough to be compatible with pybind11
(see their `FAQ <https://pybind11.readthedocs.io/en/stable/faq.html>`_)
* `numpy <http://numpy.org>`_, and
* an OpenCL implementation. (See this `howto <http://wiki.tiker.net/OpenCLHowTo>`_ for how to get one.)

Places on the web related to PyOpenCL:

* `Python package index <http://pypi.python.org/pypi/pyopencl>`_ (download releases)

* `Documentation <http://documen.tician.de/pyopencl>`_ (read how things work)
* `Conda Forge <https://anaconda.org/conda-forge/pyopencl>`_ (download binary packages for Linux, macOS, Windows)
* `C. Gohlke's Windows binaries <http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl>`_ (download Windows binaries)
* `Github <http://github.com/inducer/pyopencl>`_ (get latest source code, file bugs)
* `Wiki <http://wiki.tiker.net/PyOpenCL>`_ (read installation tips, get examples, read FAQ)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyopencl-2018.2.3.tar.gz (340.2 kB view details)

Uploaded Source

File details

Details for the file pyopencl-2018.2.3.tar.gz.

File metadata

  • Download URL: pyopencl-2018.2.3.tar.gz
  • Upload date:
  • Size: 340.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for pyopencl-2018.2.3.tar.gz
Algorithm Hash digest
SHA256 ebefe9505cad970dfb4c8024630ef5a546c68d22943dbb3e5677943a6d006ac6
MD5 31e27bfb496772b189bb21b7ce297706
BLAKE2b-256 f82a953d7373893f0e2e4f48db996712a5613dccb80bc9339d51d8437c6e21c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page