Skip to main content

Python wrapper for OpenCL

Project description

Gitlab Build Status Github Build Status Python Package Index Release Page Zenodo DOI for latest release

PyOpenCL lets you access GPUs and other massively parallel compute devices from Python. It tries to offer computing goodness in the spirit of its sister project PyCUDA:

  • Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code.

  • Completeness. PyOpenCL puts the full power of OpenCL’s API at your disposal, if you wish. Every obscure get_info() query and all CL calls are accessible.

  • Automatic Error Checking. All CL errors are automatically translated into Python exceptions.

  • Speed. PyOpenCL’s base layer is written in C++, so all the niceties above are virtually free.

  • Helpful and complete Documentation as well as a Wiki.

  • Liberal license. PyOpenCL is open-source under the MIT license and free for commercial, academic, and private use.

  • Broad support. PyOpenCL was tested and works with Apple’s, AMD’s, and Nvidia’s CL implementations.

Simple 4-step install instructions using Conda on Linux and macOS (that also install a working OpenCL implementation!) can be found in the documentation.

What you’ll need if you do not want to use the convenient instructions above and instead build from source:

  • gcc/g++ new enough to be compatible with pybind11 (see their FAQ)

  • numpy, and

  • an OpenCL implementation. (See this howto for how to get one.)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyopencl-2022.3.1.tar.gz (470.4 kB view details)

Uploaded Source

Built Distributions

pyopencl-2022.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (889.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyopencl-2022.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (854.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyopencl-2022.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (884.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyopencl-2022.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (845.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyopencl-2022.3.1-cp311-cp311-win_amd64.whl (548.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyopencl-2022.3.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyopencl-2022.3.1-cp311-cp311-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyopencl-2022.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (917.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyopencl-2022.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (883.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyopencl-2022.3.1-cp311-cp311-macosx_10_9_x86_64.whl (635.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyopencl-2022.3.1-cp310-cp310-win_amd64.whl (548.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyopencl-2022.3.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyopencl-2022.3.1-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyopencl-2022.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyopencl-2022.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (883.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyopencl-2022.3.1-cp310-cp310-macosx_10_9_x86_64.whl (635.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyopencl-2022.3.1-cp39-cp39-win_amd64.whl (532.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyopencl-2022.3.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyopencl-2022.3.1-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyopencl-2022.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (919.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyopencl-2022.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (883.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyopencl-2022.3.1-cp39-cp39-macosx_10_9_x86_64.whl (635.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyopencl-2022.3.1-cp38-cp38-win_amd64.whl (548.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyopencl-2022.3.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyopencl-2022.3.1-cp38-cp38-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyopencl-2022.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (917.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyopencl-2022.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (883.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyopencl-2022.3.1-cp38-cp38-macosx_10_9_x86_64.whl (635.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyopencl-2022.3.1.tar.gz.

File metadata

  • Download URL: pyopencl-2022.3.1.tar.gz
  • Upload date:
  • Size: 470.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyopencl-2022.3.1.tar.gz
Algorithm Hash digest
SHA256 4a3db0fe61b5cdc95267526deebd71a7e1d795694d4b0fe2761f0630bcca3621
MD5 767194b54abf8be8a739c02b139ff3fa
BLAKE2b-256 dd4c7f60601cb3e55d21cff151da2121d7d19e8f9f69e3519dc8fca2593668b2

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffbc2996e667922d3ec429bfef0f4d70356afc55c4c80a6228169414baf61ffc
MD5 b97c6599cdd17547ba9c5a35ce59b6a2
BLAKE2b-256 5b51a0ba905c295ac8cee7fb292d6f10aeeab799ad3f451652e517d5886a9748

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c34bef26369999a9efbb2345278eaaf0c949905fcb509cd4c29f4e5ab73d7526
MD5 06fe7ac21e7db2f806dcfd467067806f
BLAKE2b-256 6d585fb3029d581ab748fcde44495882fa9e852b2ad34db9b2c3d32300bb1c52

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7364ca86c452194c18e20efb859b4c929750eb2181374b5ee28e1bc3fb0bba5f
MD5 e3599cbcd1b23156db14f6b2f0b198d4
BLAKE2b-256 0aadf2ac8016540bde958efd7765773e9475226e377267f6a7f731fa879c8ef5

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 728c75c1e43d5d61d966177a8af8054be32d97256ad2845e14fcbfeb4a68953e
MD5 7d907334aea08fc57ec201d6cd79f169
BLAKE2b-256 22f973baa57ec154b87a4145316939d627c57a94536f989204b03831ad80e1a5

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d71d17054e7fe35165f402ed43c64e5e39a46078edd77f6ea85fce710b025045
MD5 b8976d7b5c7f2e417de8b728665a01aa
BLAKE2b-256 dd0dd6966aa79014aab4eb95775ebf67b114ee66a2cee656a7f3dc20f2f447eb

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 905e6aca70465ecc6be69c52061a939444d8530c82c8b963e2a789de9ea4c177
MD5 33a4588cfe88e44810ed83180664173a
BLAKE2b-256 83b58d7e7e5417b459fe828e5721374e8ebd6352c6ac3c7d017656e3e91bf6ad

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0d7ff9524f5b1fa7bb9c87c3256718bbb4f96ee34ab75881d0afcfa6ff8a71c3
MD5 ecc09372947b362cb5d202a0e7592943
BLAKE2b-256 5896f9403bd459350b6dcaf0f72d3756ebe22059a0cf856580a95af315905542

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0539f5a480a31781b0d8499812995c4fe6fb78a7ce073903d5549f117fc8abcd
MD5 a4e542b7222bc0d3a58b08b521e0c1f3
BLAKE2b-256 dda4bac74d203fc90f7aeb78fa39acc68949571636c212962c99636defdf8b24

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b79c066a3c04a782bff718da2ccd84f2f6f0b8c87bbe7be32768e600680629bd
MD5 46fd3cc01942a7491112fdf0b7cc29f3
BLAKE2b-256 d779b8aca7f6d5a264b1ac81258e565b0d7639d6bfa9f25a8aee4779115cbd19

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 943b1c3a3f20ce25233688b01d3ea61b935a6f7e693797080dd0b43414f4d44a
MD5 c1003500e7df1a684332b1e35f0097ab
BLAKE2b-256 772b3c523a99d3118fab9eca354c9c0e88dde6b30932d8cec9c0f021cc1a647d

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3f3ac0f58eb4a2869db18bf5154d0b99dd90271cf244a8eb4ac347f25a1376de
MD5 7ee4211a406e1f1d1d52b1db1eb2ac02
BLAKE2b-256 1f3df56bbf5bf1cac2f8fbc2090ea1867fb3608e8255e72f79bb98bd9bb24a1d

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d7e832e5e072ee5ac26388865d6d837a74788ab1bfe17dfed9517e7a2e645f72
MD5 74410b53ee73b618a89dfc7986fb5dcd
BLAKE2b-256 d8c6cf8a5099e290a11fde0cd6af3ba1b89a351d5a30b7ab8eb462b10817f782

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a282bdd9284c0bf1da3ce6dbd71c0fc3f3f558696e5e8d209a38ec7e78221c63
MD5 4821886429c5d7884bef6e10bd7472cd
BLAKE2b-256 cc8da04f30e5fa154dbf5c5cee00dc9f9706a07b9dad78dde803fa5a41697c86

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15192d4f70d2d687c03ecc2326ba165261429c8e0b8e6a5cd07d1f91b0aa9cbf
MD5 022f8b93799d63d8d51b91a49715a17e
BLAKE2b-256 0a3a3223f8ed23baec21288e8758f5dcea004c8ceff0331c7dc056b4abde4fd1

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5cd62d230f94ffa6e5c3557f783878985c6945a67276d853fd5839a1ce0ecc9a
MD5 5c48171886d37efd0b53b9a95161fbe7
BLAKE2b-256 7203e6687bc995a399017a0d3a94dfb4d58b71d5e37b4e152fb51b8af8fb489e

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f9b3dea6dde223486fc397b0722aa7fd44f41deb8c8cd2ae8f62238bb24aee2
MD5 950399a18d042d44ddb0456faefa5b89
BLAKE2b-256 f2b798262ff556fbc96e465ba16f0c710a4d39e0680699d67ba2abf373d65ea4

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 70628cb1dd753b53eb3b7d7292668002d5bb335c00f02203cea0e25ee74b6f70
MD5 2c6a50f39194584332fe5e234524dd5d
BLAKE2b-256 d3e48e8383d5baa4a5ab55ff7c1a82b26875cffec0b691955cbc8cb1b10396f9

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c0c660d6ed7f001dc31ca3e1a25ddef08fb5212c6e86228b79a0da89461c01af
MD5 1b98c480db44e16d87e7a69d072393a1
BLAKE2b-256 6659562589d3b34d5a1778e9988bf08c5e7bcc5b497b3fd1a8d1d124e5a7e6a7

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 99a2465e8fa3007bda4093dafe7fbaa1f9fa16c911a29a8bc30058156f9c3887
MD5 8035268197d3da1f7b6538d365031573
BLAKE2b-256 78b4067daf4a6875c0095e9b8c5dc564c70a404c8b34cb137fdcd4f92c308772

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bbcc109f42001e17db58879e0af4f07c29bfc680b40a3ef9fec919fbca2ce8d4
MD5 91185810d317c85be41a7a1a8fed7b8a
BLAKE2b-256 5528b0fa69206ba17fddcc1e73b10853e602d2c05b774947d4ffd0b2d5eaa1e4

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7d237f61c964aebd0174770ba0dd562558c8781f19aec55c13b4eca5f44c1a42
MD5 f76062a6520f000b3135c2d4aaa6b7d4
BLAKE2b-256 075d9e2009f36d10e8e5a4d1bda90aae874e8119302f4bf88b516c9a54cceeeb

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90da24258603ddd4d3fdf1338ea4723099384ded79a0e54f995a95f32b570184
MD5 92cd338a00dba33cc10f186d3562ba83
BLAKE2b-256 cb003830ac906f887de7238b4eed5f4f33165fa4efe8dfba2f2ac42198704256

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 385e25e7d684352b9c30d5df23e15f06ddf29b2e9605e7b439723012abc4eea8
MD5 de0cea7cd8498879ac780c60e9ec7dd8
BLAKE2b-256 53417ed1633cd6dfbfa093be9fa6dc4cb10859884cbabc6438e3ee220738bd18

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 12684865a7efb65ed14058ecf11466d86dcd3936eb535a8aadc43ee92c98fc88
MD5 674e79473cbe839b7f027182f3ceec15
BLAKE2b-256 057d80de48b5d54522b3f1568d949072b9cfa37b035b38c6e7404203b6789653

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c675a8680199d1ab9725521993aca769952596da4cf58c3ad97814d3e144c7ab
MD5 b519cd5e702d4c750e4f6d219a122e54
BLAKE2b-256 5f1060aa63983d90c19890aad019ef83675f01652f755f862cdc60d8ccdbf506

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa24ed07984b9a1cd2a066c33db4b10eb5cbb02b14f1515c004c26a2ce50c660
MD5 7f8c4bd5e795d4159b47996452844189
BLAKE2b-256 a3a6762cddb1246d58ad0a681fb1fe8e6fa3290cc60d31871d5c1dccf75e43c0

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 627182a8627c807379293527f2d42f94363286ca910b226703875bcc4392380b
MD5 10b265a4dadae56e49dc55ab1307a79a
BLAKE2b-256 46eb10b28cbe968b5e0e6bae2208c664636d6a622b88835762ce9df1d5dc6a80

See more details on using hashes here.

File details

Details for the file pyopencl-2022.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2022.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1a84315388c781914843811c2d5895c66f2cb2128abf2415e5e44fa54befabf
MD5 b1b7311283f0184912cfebe229b5a33c
BLAKE2b-256 b98f42676ab14bf62c4da0a052da34d096f74a7177989e07186711f741e863e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page