Skip to main content

Python wrapper for OpenCL

Project description

Gitlab Build Status Github Build Status Python Package Index Release Page Zenodo DOI for latest release

PyOpenCL lets you access GPUs and other massively parallel compute devices from Python. It tries to offer computing goodness in the spirit of its sister project PyCUDA:

  • Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write correct, leak- and crash-free code.

  • Completeness. PyOpenCL puts the full power of OpenCL’s API at your disposal, if you wish. Every obscure get_info() query and all CL calls are accessible.

  • Automatic Error Checking. All CL errors are automatically translated into Python exceptions.

  • Speed. PyOpenCL’s base layer is written in C++, so all the niceties above are virtually free.

  • Helpful and complete Documentation as well as a Wiki.

  • Liberal license. PyOpenCL is open-source under the MIT license and free for commercial, academic, and private use.

  • Broad support. PyOpenCL was tested and works with Apple’s, AMD’s, and Nvidia’s CL implementations.

Simple 4-step install instructions using Conda on Linux and macOS (that also install a working OpenCL implementation!) can be found in the documentation.

What you’ll need if you do not want to use the convenient instructions above and instead build from source:

  • gcc/g++ new enough to be compatible with pybind11 (see their FAQ)

  • numpy, and

  • an OpenCL implementation. (See this howto for how to get one.)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyopencl-2023.1.tar.gz (472.6 kB view details)

Uploaded Source

Built Distributions

pyopencl-2023.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (890.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyopencl-2023.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (854.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyopencl-2023.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (884.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pyopencl-2023.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (846.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

pyopencl-2023.1-cp311-cp311-win_amd64.whl (548.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyopencl-2023.1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pyopencl-2023.1-cp311-cp311-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

pyopencl-2023.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyopencl-2023.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (883.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

pyopencl-2023.1-cp311-cp311-macosx_10_9_x86_64.whl (636.2 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyopencl-2023.1-cp310-cp310-win_amd64.whl (548.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyopencl-2023.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pyopencl-2023.1-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

pyopencl-2023.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (919.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyopencl-2023.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (883.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

pyopencl-2023.1-cp310-cp310-macosx_10_9_x86_64.whl (636.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyopencl-2023.1-cp39-cp39-win_amd64.whl (532.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyopencl-2023.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pyopencl-2023.1-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

pyopencl-2023.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (919.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyopencl-2023.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (883.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

pyopencl-2023.1-cp39-cp39-macosx_10_9_x86_64.whl (636.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyopencl-2023.1-cp38-cp38-win_amd64.whl (548.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyopencl-2023.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pyopencl-2023.1-cp38-cp38-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

pyopencl-2023.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (918.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyopencl-2023.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (882.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

pyopencl-2023.1-cp38-cp38-macosx_10_9_x86_64.whl (636.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyopencl-2023.1.tar.gz.

File metadata

  • Download URL: pyopencl-2023.1.tar.gz
  • Upload date:
  • Size: 472.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyopencl-2023.1.tar.gz
Algorithm Hash digest
SHA256 d9de607272919a507a9c24c3dfeeeafe72c05f7cd6c9e37b2119e8ee3c53a891
MD5 2b49b2c5e84081ce3df0aa77470f4e6d
BLAKE2b-256 631e512d84caeea127b03730b4028147491ef1b49a8526f246c4cbff61f21b9e

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b92a6163f81a874e970b51c7d21b9aace12d20c760ce0f0f61bf5c55dc981af5
MD5 900688078e40fb71089f0787720b348b
BLAKE2b-256 87f2d6281e94abe2a8217bfb361bc1cf28f95f49114bd6bc0b50fde397baebfe

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 91599998640aeb37d2e2102e3b5f8eb455f3ee47ab1d61e1490d212a9c21caac
MD5 e0e90901c45f754f209e789e4c1389e9
BLAKE2b-256 c777c1a8aee563024267cbd55ffac26a55eee21ed1436d38aacd87e04997e338

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16459df3ed179ad471383a48edfda69968f5140e58cb9bc87200ea0243152239
MD5 b289784e7542b645cbf6474115b89dc7
BLAKE2b-256 06614eb1e832c5909a6a6506a9db841d9ade9b7ddc44fb18263823d1c9c160c3

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e7d4fdcc184eecabf4ca43e79101a6461c26251a57b5f8d1e69fe05a1707e47
MD5 bc270e2d270feed093753924a8d2dc6f
BLAKE2b-256 23903f2b9c9fe7edf9bfb4560df5425ee117f83431a2264707a6e412e92eabf1

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f4bab81e2872cefb149aa00b959a401cb6724b73c3ff2e35d311e75a8738ed28
MD5 39792dced436682603f845c24d490aec
BLAKE2b-256 f96bc1eb27800b7a6d8d44ef1f6a606a4c4872e7ea6c3e81ddfa0f86019eac75

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 be8e7c8e4c23c83b7226ca72b76a3bba3911bfb7502b15234b9ddf3d151624ee
MD5 44e93a14c7bc68c908bf65e61766cda3
BLAKE2b-256 dd4645d784a6bc91822dcaf91f8b3325f6e9e5ae082481c8982ff07d399873b1

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6afd5e2ae33897ecbf4ef8342addfa76d52941fa0ec56e3389763c06d38b9ae4
MD5 eab3be6a374753ed749433432a6e6f6f
BLAKE2b-256 0d33c6a21b74af0c32dd2085f4046f1576cd6b57eea114e12eae2999bbe9c228

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69426ba48703f966cb74e196611fe092dcc356d1ac88fc6e7ac6a1da7026277b
MD5 51c38932d1c9dde3465d4bafedea25a2
BLAKE2b-256 743978128e78acd5e9d1c28911e4b0974b40161239e2e5a1277644043987940f

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 01de3bb37addddbee5a879d832898b109a56dd91150d1cea92f8243569897a2e
MD5 44e8ea544ef2b4b0303dae38831c4f84
BLAKE2b-256 ed594ea29e4ab597f204999c9075551e2f7d8864bc7969be50c88c66735af3ef

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b0291213d64703b8282e3f5b894d3b3db7105cef89065b076194c076f322f20
MD5 b92fe0ecaaeb52499ea792735d26ce9d
BLAKE2b-256 6227aa31a254dd9168a6794f28663e808c5d72c34e5b759a80e12e793df7257b

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 411b5a6c51ea65883a89493c7dc3901611eaad5ec97e66e0bc5a3cd0f8a96f05
MD5 94494d37e61c547647f5382597bab7cd
BLAKE2b-256 0b191536f7460d9e917182b608ba891ec7c6c588ffa4f52c4c0f6acfeabee82c

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 16bf7222f8f53a0b4757195d7cc05ccd16c0c7f00df29cc0641537dc6bc347e6
MD5 321226b72728bf4e20d7521b52c2a7ce
BLAKE2b-256 d35289d909a3a0e058454d69337b55ea65169ad78765d8ac05bc9a8e7990e781

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1e46efd6c93c631bbd53430d79166190475090c32923642264801448f66434ab
MD5 deabf7ae516148ee9105900fb1ccca97
BLAKE2b-256 d03fd4831c47a2d52efa73fd7fae1d819b9b20f1e31367ee6349bd4c326f7c65

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48f7bc47de4166f570a90ec9b9b796636c6bd2f30d153f512859c01d0a5fccb3
MD5 0415250cc92e27c930572bc3ad9f77dc
BLAKE2b-256 f9bfcaaa3216d8e26c4945606637a88914bda28041e37eca9dcb97de0721fc2f

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d09d1bbfaf7bab714ba01e748567191d82b3061b98493127bda765130228b10d
MD5 cf7d69fbc593f36d50d5a8eb42d2161c
BLAKE2b-256 ea5adf524b4f07e7e4fa55946d722b5685bc72dcf3eb0abcf022d2371719a89f

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fc478718e2c09bc27390c984fd8b32377a8ea5314c68640431ffd57ae2a8800
MD5 9b94afc0b75d7551fd8b9a2487ce7246
BLAKE2b-256 7a9d3b756a1003575d851cf18b9f805d0e3264bba6ba19ac9f0cb36b7f852fb9

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyopencl-2023.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 532.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyopencl-2023.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2592d57386df2b4163d9c5b773e9a513a7292c9f800d3e04c466e7c3c45b921d
MD5 a33448eda51fbbdea52e7a6854e449cb
BLAKE2b-256 37123a700ea8b5f92172976d309f1a0762cf93b7fb531b00468e62e9ce1e656f

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe7281e7358f416020fead6293eaab2f39de92f3c7755d7a86ab351ac109602c
MD5 131eea81fbd3eb747ee2988a3be4b74f
BLAKE2b-256 4a42231ba977d082f3d0bd068927db5c2d5c0e397e1903b1e8614f60481c012a

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0beb9b58ac3498b6539d03e64a257351453e8017ed041bcc586188951b9f2408
MD5 6c8569c419f507441674f934e3c6fcee
BLAKE2b-256 af27a49c5e5dbd45d11fa019228fe2edaf5068c0fda0bf78c43eeb1acf953f30

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24a8a74ea01aeab6a4af46abeacbd62431496f09d0b20f3c6ee720476cf8187d
MD5 733231f5eb54b47ab38020684bf62233
BLAKE2b-256 72cdf38eae114b6f2631366081ec79fbbd465376257a4c7d466155aaa2852617

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0d1983a8e434c857c179741b20f91ddc71f5577ecd7a5261458f5288dc80199a
MD5 4d2b6849d17a33876ec569435e69525f
BLAKE2b-256 db3518cd40f4daec6b358a3b3ab05d19c6b59e71eadda9aed3af73593f45eea2

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22b9f5d4cd51fcfe7266b27dffe5a56a4527f4eb8a558b588ffe88de509b93cc
MD5 3496e9d4d447a0d4bb91161fa875c648
BLAKE2b-256 4f047decac668513f5272b7ea4ea98211647f41f827d89eed96199bf39e732b3

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyopencl-2023.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 548.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for pyopencl-2023.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 075aa6bbfe24a5f86d5a1b728e6dc4cd2d0664157785aa62c9b863e776cff2ae
MD5 436a7c6a16fbbc43878c69295e37141e
BLAKE2b-256 f9884b8d1e5b58b695fcbe4b26640cf0ed74ded40b5d9a589e97f5dd47194747

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c8f3e307e05b24a82c9d4dc0f6f1974b047f7f65b23ee4c056fe27600f480564
MD5 b89fb0413c73ca5fe27a2a81b043583d
BLAKE2b-256 fc70247ba4032e42ac2b58140230d00bab641bb3ad712c39a0982e8e552d5c4c

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3023d453a20d5c1bbe0650f5afe501cd1bfab8337272269789b166282df83e87
MD5 610fa1ff3c03ef937d1ca508dbf43ed2
BLAKE2b-256 1c40b1568fcbfbb76fc5f7c47fcc344098317baa28873b98bdfa35f7369c811a

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce6e1c36745c70c694c42662d1c1dfbf1e3d3a11837794e7d9e5c49fe726aee8
MD5 2b2c272ac3ec2b9738c644ce2d79f0cf
BLAKE2b-256 8f560feb4a3d4d21c47d9c4f3c79b69bde79253fc6d691fe97cfe0cf81005eac

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e4716605d799518e5379cc9c16b74fda2bd20cefe51abb075d684c2e8b64f002
MD5 8c49b92c3549804e4be7a9c8d5e04afb
BLAKE2b-256 76fef43ca6206d966641c29c37746a2c139a0ec1538fb104154540bf016d06a1

See more details on using hashes here.

File details

Details for the file pyopencl-2023.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyopencl-2023.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c35aaf2eeb8cac08681567dcb3a5c0d6b560828388476516154135e0428a667
MD5 dd79f0d9be9d9d066af2fcbd8378cb6c
BLAKE2b-256 9639c9b20144edc10b433fa53a59d0a9676972af4432abfb0f55f3a92adf8f61

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page