Skip to main content

Python module to run and analyze benchmarks

Project description

Latest release on the Python Cheeseshop (PyPI) Build status of pyperf on Travis CI

The Python pyperf module is a toolkit to write, run and analyze benchmarks.

Features

  • Simple API to run reliable benchmarks

  • Automatically calibrate a benchmark for a time budget.

  • Spawn multiple worker processes.

  • Compute the mean and standard deviation.

  • Detect if a benchmark result seems unstable.

  • JSON format to store benchmark results.

  • Support multiple units: seconds, bytes and integer.

Usage

To run a benchmark use the pyperf timeit command (result written into bench.json):

$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us

Or write a benchmark script bench.py:

#!/usr/bin/env python3
import pyperf

runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
              stmt="sorted(s, key=f)",
              setup="f = lambda x: x; s = list(range(1000))")

See the API docs for full details on the timeit function and the Runner class. To run the script and dump the results into a file named bench.json:

$ python3 bench.py -o bench.json

To analyze benchmark results use the pyperf stats command:

$ python3 -m pyperf stats bench.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms

Number of calibration run: 1
Number of run with values: 40
Total number of run: 41

Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120

Minimum:         22.1 ms
Median +- MAD:   22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum:         22.9 ms

  0th percentile: 22.1 ms (-2% of the mean) -- minimum
  5th percentile: 22.3 ms (-1% of the mean)
 25th percentile: 22.4 ms (-1% of the mean) -- Q1
 50th percentile: 22.5 ms (-0% of the mean) -- median
 75th percentile: 22.7 ms (+1% of the mean) -- Q3
 95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum

Number of outlier (out of 22.0 ms..23.0 ms): 0

There’s also:

  • pyperf compare_to command tests if a difference is significant. It supports comparison between multiple benchmark suites (made of multiple benchmarks)

    $ python3 -m pyperf compare_to py2.json py3.json --table
    +-----------+---------+------------------------------+
    | Benchmark | py2     | py3                          |
    +===========+=========+==============================+
    | timeit    | 4.70 us | 4.22 us: 1.11x faster (-10%) |
    +-----------+---------+------------------------------+
  • pyperf system tune command to tune your system to run stable benchmarks.

  • Automatically collect metadata on the computer and the benchmark: use the pyperf metadata command to display them, or the pyperf collect_metadata command to manually collect them.

  • --track-memory and --tracemalloc options to track the memory usage of a benchmark.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyperf-1.7.1.tar.gz (174.8 kB view details)

Uploaded Source

Built Distribution

pyperf-1.7.1-py2.py3-none-any.whl (87.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyperf-1.7.1.tar.gz.

File metadata

  • Download URL: pyperf-1.7.1.tar.gz
  • Upload date:
  • Size: 174.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.6

File hashes

Hashes for pyperf-1.7.1.tar.gz
Algorithm Hash digest
SHA256 c37690e810116a83a244dfeec47885e2f0475b4c450313904be3bc2cdaf6d50a
MD5 d9e894dc843bb7f0abff109931a29895
BLAKE2b-256 0e68605d68755c8c5d88c7c1c798b6b82f8c13d8435c8ef1cb224c436811b99b

See more details on using hashes here.

File details

Details for the file pyperf-1.7.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pyperf-1.7.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 87.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.6

File hashes

Hashes for pyperf-1.7.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 893ec2ebccb7b544e55fcf93e8efbc7d8ebbc7b59cf91139907cc0cdb3d68c1c
MD5 0d7bfdc14f2b49a582eae85b4a9e5a89
BLAKE2b-256 d1a3624b96d449cff918925879034ade5fd90af4b0480122f1eeebb035fd4269

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page