Skip to main content

Python module to run and analyze benchmarks

Project description

Latest release on the Python Cheeseshop (PyPI) Build status of pyperf on Travis CI

The Python pyperf module is a toolkit to write, run and analyze benchmarks.

Features

  • Simple API to run reliable benchmarks

  • Automatically calibrate a benchmark for a time budget.

  • Spawn multiple worker processes.

  • Compute the mean and standard deviation.

  • Detect if a benchmark result seems unstable.

  • JSON format to store benchmark results.

  • Support multiple units: seconds, bytes and integer.

Usage

To run a benchmark use the pyperf timeit command (result written into bench.json):

$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us

Or write a benchmark script bench.py:

#!/usr/bin/env python3
import pyperf

runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
              stmt="sorted(s, key=f)",
              setup="f = lambda x: x; s = list(range(1000))")

See the API docs for full details on the timeit function and the Runner class. To run the script and dump the results into a file named bench.json:

$ python3 bench.py -o bench.json

To analyze benchmark results use the pyperf stats command:

$ python3 -m pyperf stats bench.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms

Number of calibration run: 1
Number of run with values: 40
Total number of run: 41

Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120

Minimum:         22.1 ms
Median +- MAD:   22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum:         22.9 ms

  0th percentile: 22.1 ms (-2% of the mean) -- minimum
  5th percentile: 22.3 ms (-1% of the mean)
 25th percentile: 22.4 ms (-1% of the mean) -- Q1
 50th percentile: 22.5 ms (-0% of the mean) -- median
 75th percentile: 22.7 ms (+1% of the mean) -- Q3
 95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum

Number of outlier (out of 22.0 ms..23.0 ms): 0

There’s also:

  • pyperf compare_to command tests if a difference is significant. It supports comparison between multiple benchmark suites (made of multiple benchmarks)

    $ python3 -m pyperf compare_to py36.json py38.json --table
    +-----------+---------+------------------------------+
    | Benchmark | py36    | py38                         |
    +===========+=========+==============================+
    | timeit    | 4.70 us | 4.22 us: 1.11x faster (-10%) |
    +-----------+---------+------------------------------+
  • pyperf system tune command to tune your system to run stable benchmarks.

  • Automatically collect metadata on the computer and the benchmark: use the pyperf metadata command to display them, or the pyperf collect_metadata command to manually collect them.

  • --track-memory and --tracemalloc options to track the memory usage of a benchmark.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyperf-2.0.0.tar.gz (173.0 kB view details)

Uploaded Source

Built Distribution

pyperf-2.0.0-py2.py3-none-any.whl (85.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyperf-2.0.0.tar.gz.

File metadata

  • Download URL: pyperf-2.0.0.tar.gz
  • Upload date:
  • Size: 173.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.6

File hashes

Hashes for pyperf-2.0.0.tar.gz
Algorithm Hash digest
SHA256 2189fbc4af08d519f85468e70e32c902eab0f1341b2c41028b94b2832d3169a7
MD5 7f62d3f6fc5475138791d3d883fdf4cd
BLAKE2b-256 84498a5fb8eed0c600e763b33b6d4e62ffc7b0b9b13b03a69e7969fea5985f3a

See more details on using hashes here.

File details

Details for the file pyperf-2.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pyperf-2.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 85.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.6

File hashes

Hashes for pyperf-2.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 839192bafba79893fd2ec51d346561ac951d304ef03069faeecec063a58aff52
MD5 95ab6b557e92f3a19b3b7497c56bc26b
BLAKE2b-256 95768a6d15e652d0c1bce48562b4f08215d8406497312ca52f4a1ee6bf438023

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page