Skip to main content

Python module to run and analyze benchmarks

Project description

Latest release on the Python Cheeseshop (PyPI) Build status of pyperf on GitHub Actions

The Python pyperf module is a toolkit to write, run and analyze benchmarks.

Features

  • Simple API to run reliable benchmarks

  • Automatically calibrate a benchmark for a time budget.

  • Spawn multiple worker processes.

  • Compute the mean and standard deviation.

  • Detect if a benchmark result seems unstable.

  • JSON format to store benchmark results.

  • Support multiple units: seconds, bytes and integer.

Usage

To run a benchmark use the pyperf timeit command (result written into bench.json):

$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us

Or write a benchmark script bench.py:

#!/usr/bin/env python3
import pyperf

runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
              stmt="sorted(s, key=f)",
              setup="f = lambda x: x; s = list(range(1000))")

See the API docs for full details on the timeit function and the Runner class. To run the script and dump the results into a file named bench.json:

$ python3 bench.py -o bench.json

To analyze benchmark results use the pyperf stats command:

$ python3 -m pyperf stats telco.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms

Number of calibration run: 1
Number of run with values: 40
Total number of run: 41

Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120

Minimum:         22.1 ms
Median +- MAD:   22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum:         22.9 ms

  0th percentile: 22.1 ms (-2% of the mean) -- minimum
  5th percentile: 22.3 ms (-1% of the mean)
 25th percentile: 22.4 ms (-1% of the mean) -- Q1
 50th percentile: 22.5 ms (-0% of the mean) -- median
 75th percentile: 22.7 ms (+1% of the mean) -- Q3
 95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum

Number of outlier (out of 22.0 ms..23.0 ms): 0

There’s also:

  • pyperf compare_to command tests if a difference is significant. It supports comparison between multiple benchmark suites (made of multiple benchmarks)

    $ python3 -m pyperf compare_to --table mult_list_py36.json mult_list_py37.json mult_list_py38.json
    +----------------+----------------+-----------------------+-----------------------+
    | Benchmark      | mult_list_py36 | mult_list_py37        | mult_list_py38        |
    +================+================+=======================+=======================+
    | [1]*1000       | 2.13 us        | 2.09 us: 1.02x faster | not significant       |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2]*1000     | 3.70 us        | 5.28 us: 1.42x slower | 3.18 us: 1.16x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2,3]*1000   | 4.61 us        | 6.05 us: 1.31x slower | 4.17 us: 1.11x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | Geometric mean | (ref)          | 1.22x slower          | 1.09x faster          |
    +----------------+----------------+-----------------------+-----------------------+
  • pyperf system tune command to tune your system to run stable benchmarks.

  • Automatically collect metadata on the computer and the benchmark: use the pyperf metadata command to display them, or the pyperf collect_metadata command to manually collect them.

  • --track-memory and --tracemalloc options to track the memory usage of a benchmark.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyperf-2.3.0.tar.gz (202.2 kB view details)

Uploaded Source

Built Distribution

pyperf-2.3.0-py2.py3-none-any.whl (88.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyperf-2.3.0.tar.gz.

File metadata

  • Download URL: pyperf-2.3.0.tar.gz
  • Upload date:
  • Size: 202.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pyperf-2.3.0.tar.gz
Algorithm Hash digest
SHA256 8a85dd42e067131d5b26b71472336da7f7f4b87ff9c97350d89f5ff0de9adedc
MD5 fba5161fb1306f3313923b08d8944583
BLAKE2b-256 63b9af915e7bb6a12bc5fa990a70bad9945490547158dd66ed10cb877cb8ef42

See more details on using hashes here.

File details

Details for the file pyperf-2.3.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pyperf-2.3.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 88.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pyperf-2.3.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f4cd1182c2436085dbc57e5940e5995a7658d63ed5f882748d48673e5caf5ecd
MD5 565e884d3edd96199d6dc15e872b0bc8
BLAKE2b-256 7fc58bf9d0686237e6e29ad0589d2247009817f65e85b02ead916a6ae657994f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page