Skip to main content

Python module to run and analyze benchmarks

Project description

Latest release on the Python Cheeseshop (PyPI) Build status of pyperf on GitHub Actions

The Python pyperf module is a toolkit to write, run and analyze benchmarks.

Features

  • Simple API to run reliable benchmarks

  • Automatically calibrate a benchmark for a time budget.

  • Spawn multiple worker processes.

  • Compute the mean and standard deviation.

  • Detect if a benchmark result seems unstable.

  • JSON format to store benchmark results.

  • Support multiple units: seconds, bytes and integer.

Usage

To run a benchmark use the pyperf timeit command (result written into bench.json):

$ python3 -m pyperf timeit '[1,2]*1000' -o bench.json
.....................
Mean +- std dev: 4.22 us +- 0.08 us

Or write a benchmark script bench.py:

#!/usr/bin/env python3
import pyperf

runner = pyperf.Runner()
runner.timeit(name="sort a sorted list",
              stmt="sorted(s, key=f)",
              setup="f = lambda x: x; s = list(range(1000))")

See the API docs for full details on the timeit function and the Runner class. To run the script and dump the results into a file named bench.json:

$ python3 bench.py -o bench.json

To analyze benchmark results use the pyperf stats command:

$ python3 -m pyperf stats telco.json
Total duration: 29.2 sec
Start date: 2016-10-21 03:14:19
End date: 2016-10-21 03:14:53
Raw value minimum: 177 ms
Raw value maximum: 183 ms

Number of calibration run: 1
Number of run with values: 40
Total number of run: 41

Number of warmup per run: 1
Number of value per run: 3
Loop iterations per value: 8
Total number of values: 120

Minimum:         22.1 ms
Median +- MAD:   22.5 ms +- 0.1 ms
Mean +- std dev: 22.5 ms +- 0.2 ms
Maximum:         22.9 ms

  0th percentile: 22.1 ms (-2% of the mean) -- minimum
  5th percentile: 22.3 ms (-1% of the mean)
 25th percentile: 22.4 ms (-1% of the mean) -- Q1
 50th percentile: 22.5 ms (-0% of the mean) -- median
 75th percentile: 22.7 ms (+1% of the mean) -- Q3
 95th percentile: 22.9 ms (+2% of the mean)
100th percentile: 22.9 ms (+2% of the mean) -- maximum

Number of outlier (out of 22.0 ms..23.0 ms): 0

There’s also:

  • pyperf compare_to command tests if a difference is significant. It supports comparison between multiple benchmark suites (made of multiple benchmarks)

    $ python3 -m pyperf compare_to --table mult_list_py36.json mult_list_py37.json mult_list_py38.json
    +----------------+----------------+-----------------------+-----------------------+
    | Benchmark      | mult_list_py36 | mult_list_py37        | mult_list_py38        |
    +================+================+=======================+=======================+
    | [1]*1000       | 2.13 us        | 2.09 us: 1.02x faster | not significant       |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2]*1000     | 3.70 us        | 5.28 us: 1.42x slower | 3.18 us: 1.16x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | [1,2,3]*1000   | 4.61 us        | 6.05 us: 1.31x slower | 4.17 us: 1.11x faster |
    +----------------+----------------+-----------------------+-----------------------+
    | Geometric mean | (ref)          | 1.22x slower          | 1.09x faster          |
    +----------------+----------------+-----------------------+-----------------------+
  • pyperf system tune command to tune your system to run stable benchmarks.

  • Automatically collect metadata on the computer and the benchmark: use the pyperf metadata command to display them, or the pyperf collect_metadata command to manually collect them.

  • --track-memory and --tracemalloc options to track the memory usage of a benchmark.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyperf-2.4.1.tar.gz (220.7 kB view details)

Uploaded Source

Built Distribution

pyperf-2.4.1-py2.py3-none-any.whl (90.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyperf-2.4.1.tar.gz.

File metadata

  • Download URL: pyperf-2.4.1.tar.gz
  • Upload date:
  • Size: 220.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyperf-2.4.1.tar.gz
Algorithm Hash digest
SHA256 38cf5e90c56f906a8320ce82a50bfa92c902b93affd72e4dc81580115f355853
MD5 19194d5f073ddf1dbaf1dbacc218d0f9
BLAKE2b-256 37edda8956747c7d6a038fba145c3b3bd8af5ebbfe791814144843ee56476e89

See more details on using hashes here.

File details

Details for the file pyperf-2.4.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pyperf-2.4.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 90.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for pyperf-2.4.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 754ed4eb33afabf6ba656402ae3f9b2e0e48bd7b54af34ff7b290d4576d785ac
MD5 79f8dde88fc1bddb6946e6d4dfa35e9b
BLAKE2b-256 231b03928bd4cdf5602f3d2f5dbef8a7926273abc6a5ef39e5316842e8d1d6a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page