Skip to main content

Help visualize profiling data from cProfile with kcachegrind and qcachegrind

Project description

Overview

Script to help visualize profiling data collected with the cProfile python module with the kcachegrind (screenshots) graphical calltree analyser.

This is a rebranding of the venerable http://www.gnome.org/~johan/lsprofcalltree.py script by David Allouche et Al. It aims at making it easier to distribute (e.g. through pypi) and behave more like the scripts of the debian kcachegrind-converters package. The final goal is to make it part of the official upstream kdesdk package.

Command line usage

Upon installation you should have a pyprof2calltree script in your path:

$ pyprof2calltree --help
Usage: /usr/bin/pyprof2calltree [-k] [-o output_file_path] [-i input_file_path] [-r scriptfile [args]]

Options:
  -h, --help            show this help message and exit
  -o OUTFILE, --outfile=OUTFILE
                        Save calltree stats to <outfile>
  -i INFILE, --infile=INFILE
                        Read python stats from <infile>
  -r SCRIPT, --run-script=SCRIPT
                        Name of the python script to run to collect profiling
                        data
  -k, --kcachegrind     Run the kcachegrind tool on the converted data

Python shell usage

pyprof2calltree is also best used from an interactive python shell such as the default shell. For instance let us profile XML parsing:

>>> from xml.etree import ElementTree
>>> from cProfile import Profile
>>> xml_content = '<a>\n' + '\t<b/><c><d>text</d></c>\n' * 100 + '</a>'
>>> profiler = Profile()
>>> profiler.runctx(
...     "ElementTree.fromstring(xml_content)",
...     locals(), globals())

>>> from pyprof2calltree import convert, visualize
>>> visualize(profiler.getstats())                            # run kcachegrind
>>> convert(profiler.getstats(), 'profiling_results.kgrind')  # save for later

or with the ipython:

In [1]: %doctest_mode
Exception reporting mode: Plain
Doctest mode is: ON

>>> from xml.etree import ElementTree
>>> xml_content = '<a>\n' + '\t<b/><c><d>text</d></c>\n' * 100 + '</a>'
>>> %prun -D out.stats ElementTree.fromstring(xml_content)

*** Profile stats marshalled to file 'out.stats'

>>> from pyprof2calltree import convert, visualize
>>> visualize('out.stats')
>>> convert('out.stats', 'out.kgrind')

>>> results = %prun -r ElementTree.fromstring(xml_content)
>>> visualize(results)

Change log

  • 1.3.2 - 2014-07-05: Bugfix: correct source file paths (#12)

  • 1.3.1 - 2013-11-27: Bugfix for broken output writing on python 3 (#8)

  • 1.3.0 - 2013-11-19: qcachegrind support

  • 1.2.0 - 2013-11-09: Python 3 support

  • 1.1.1 - 2013-09-25: Miscellaneous bugfixes

  • 1.1.0 - 2008-12-21: integrate fix in conversion by David Glick

  • 1.0.3 - 2008-10-16: fix typos in 1.0 release

  • 1.0 - 2008-10-16: initial release under the pyprof2calltree name

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyprof2calltree-1.3.2.tar.gz (6.6 kB view details)

Uploaded Source

File details

Details for the file pyprof2calltree-1.3.2.tar.gz.

File metadata

File hashes

Hashes for pyprof2calltree-1.3.2.tar.gz
Algorithm Hash digest
SHA256 28eac89262d0edd86ee2574d24d1840cbca2d4ed6a1de7e1d8fc05f30ea5a22b
MD5 afd3fc6cac1189dd5f23561e21e06058
BLAKE2b-256 695a27fcfc7f5319141812b81775420561c6b8feb721ce9219a26e66025d0233

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page