Help visualize profiling data from cProfile with kcachegrind and qcachegrind
Project description
Overview
Script to help visualize profiling data collected with the cProfile Python module with the kcachegrind (screenshots) graphical calltree analyser.
This is a rebranding of the venerable http://www.gnome.org/~johan/lsprofcalltree.py script by David Allouche et Al. It aims at making it easier to distribute (e.g. through PyPI) and behave more like the scripts of the debian kcachegrind-converters package. The final goal is to make it part of the official upstream kdesdk package.
Command line usage
Upon installation you should have a pyprof2calltree script in your path:
$ pyprof2calltree --help usage: pyprof2calltree [-h] [-o output_file_path] [-i input_file_path] [-k] [-r scriptfile [args ...]] optional arguments: -h, --help show this help message and exit -o output_file_path, --outfile output_file_path Save calltree stats to <outfile> -i input_file_path, --infile input_file_path Read Python stats from <infile> -k, --kcachegrind Run the kcachegrind tool on the converted data -r scriptfile [args ...], --run-script scriptfile [args ...] Name of the Python script to run to collect profiling data
Python shell usage
pyprof2calltree is also best used from an interactive Python shell such as the default shell. For instance let us profile XML parsing:
>>> from xml.etree import ElementTree >>> from cProfile import Profile >>> xml_content = '<a>\n' + '\t<b/><c><d>text</d></c>\n' * 100 + '</a>' >>> profiler = Profile() >>> profiler.runctx( ... "ElementTree.fromstring(xml_content)", ... locals(), globals()) >>> from pyprof2calltree import convert, visualize >>> visualize(profiler.getstats()) # run kcachegrind >>> convert(profiler.getstats(), 'profiling_results.kgrind') # save for later
or with the ipython:
In [1]: %doctest_mode Exception reporting mode: Plain Doctest mode is: ON >>> from xml.etree import ElementTree >>> xml_content = '<a>\n' + '\t<b/><c><d>text</d></c>\n' * 100 + '</a>' >>> %prun -D out.stats ElementTree.fromstring(xml_content) *** Profile stats marshalled to file 'out.stats' >>> from pyprof2calltree import convert, visualize >>> visualize('out.stats') >>> convert('out.stats', 'out.kgrind') >>> results = %prun -r ElementTree.fromstring(xml_content) >>> visualize(results)
Change log
1.4.4 - 2018-10-19: Numerous small improvements, drop support for EOL python versions
1.4.3 - 2017-07-28: Windows support (fixed is_installed check - #21)
1.4.2 - 2017-07-19: No feature or bug fixes, just license clarification (#20)
1.4.1 - 2017-05-20: No feature or bug fixes, just test distribution (#17)
1.4.0 - 2016-09-03: Support multiple functions with the same name, tick unit from millis to nanos, tests added (#15)
1.3.2 - 2014-07-05: Bugfix: correct source file paths (#12)
1.3.1 - 2013-11-27: Bugfix for broken output writing on Python 3 (#8)
1.3.0 - 2013-11-19: qcachegrind support
1.2.0 - 2013-11-09: Python 3 support
1.1.1 - 2013-09-25: Miscellaneous bugfixes
1.1.0 - 2008-12-21: integrate fix in conversion by David Glick
1.0.3 - 2008-10-16: fix typos in 1.0 release
1.0 - 2008-10-16: initial release under the pyprof2calltree name
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyprof2calltree-1.4.4.tar.gz
.
File metadata
- Download URL: pyprof2calltree-1.4.4.tar.gz
- Upload date:
- Size: 10.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/2.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ec2d4d70aa1cb3e2e65a8445247eb32c1ef289bbbd64837c63e0994241f90ea |
|
MD5 | fe46c9f0370c13760fc80312ac82968b |
|
BLAKE2b-256 | 174e2bf8ed9e4ea7b1c547c9a887235b1e90bccf5cde2f9f61c42e0e1f87d62b |
File details
Details for the file pyprof2calltree-1.4.4-py2.py3-none-any.whl
.
File metadata
- Download URL: pyprof2calltree-1.4.4-py2.py3-none-any.whl
- Upload date:
- Size: 8.8 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 252eead6e7df997183ac24b0063394a87d15fe3ebc7e8d84cc80fc441f62b321 |
|
MD5 | 4bbf56ceae90e3421dcdcbcecd783e87 |
|
BLAKE2b-256 | 0870af62e922986974190bb016816841b65053f62f483f539680393854a97d75 |