Skip to main content

Package for aiding writing classes with lots of similar simple properties without the boilerplate

Project description

What is pyproprop?

Do you often find yourself writing classes with properties such as:

from some_other_module import DefaultObject, some_type

class ExampleClass:

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

    @property
    def type_checked_attr(self):
        return self._type_checked_attr

    @type_checked_attr.setter
    def type_checked_attr(self, val):
        if not isinstance(val, some_type):
            msg = "`type_checked_attr` must be of `some_type`"
            raise TypeError(msg)
        self._type_checked_attr = val

    @property
    def bounded_numeric_attr(self):
        return self._bounded_numeric_attr

    @bounded_numeric_attr.setter
    def bounded_numeric_attr(self, val):
        val = float(val)
        lower_bound = -1.0
        upper_bound = 2.5
        if val < lower_bound:
            msg = f"`bounded_numeric_attr` must be greater than {lower_bound}"
            raise ValueError(msg)
        if val >= upper_bound:
            msg = (f"`bounded_numeric_attr` must be less than or equal to "
                   f"{upper_bound}.")
            raise ValueError(msg)
        self._type_checked_attr = val

    @property
    def specific_length_sequence_attr(self):
        return self._specific_length_sequence_attr

    @specific_length_sequence_attr.setter
    def specific_length_sequence_attr(self, val):
        if len(val) != 2:
            msg = "`specific_length_sequence` must be an iterable of length 2."
            raise ValueError(msg)
        self._specific_length_sequence_attr = val

    @property
    def obj_with_method_applied_value(self):
        return self._obj_with_method_applied_value

    @obj_with_method_applied_value.setter
    def obj_with_method_applied_value(self, val):
        val = str(val)
        self._obj_with_method_applied_value = val.title()

    @property
    def instantiate_default_if_none_attr(self):
        return self._instantiate_default_if_none_attr

    @instantiate_default_if_none_attr.setter
    def instantiate_default_if_none_attr(self, val):
        if val is None:
            val = DefaultObject()
        self._instantiate_default_if_none_attr = val

With pyproprop all of this boilerplate can be removed and instead the exact same class can be rewritten as:

from pyproprop import processed_property
from some_other_module import DefaultObject, some_type

class ExampleClass:

    type_checked_attr = processed_property(
        "type_checked_attr",
        description="property with enforced type of `some_type`",
        type=some_type,
    )
    bounded_numeric_attr = processed_property(
        "bounded_numeric_attr",
        description="numerical attribute with upper and lower bounds"
        type=float,
        cast=True,
        min=-1.0,
        max=2.5,
    )
    specific_length_sequence_attr = processed_property(
        "specific_length_sequence_attr",
        description="sequence of length exactly 2",
        len=2,
    )
    obj_with_method_applied_attr = processed_property(
        "obj_with_method_applied_attr",
        description="sting formatted to use title case"
        type=str,
        cast=True,
        method="title",
    )
    instantiate_default_if_none_attr = processed_property(
        "instantiate_default_if_none_attr",
        default=DefaultObject,
    )

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

Installation

The easiest way to install pyproprop is using the [Anaconda Python distribution](https://www.anaconda.com/what-is-anaconda/) and its included Conda package management system. To install pyproprop and its required dependencies, enter the following command at a command prompt:

conda install pyproprop

To install using pip, enter the following command at a command prompt:

pip install pyproprop

For more information, refer to the [installation documentation](https://pyproprop.readthedocs.io/en/latest/installation.html).

Contribute

  • Issue Tracker: github.com/brocksam/pyproprop/issues

  • Source Code: github.com/brocksam/pyproprop

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyproprop-0.0.3.tar.gz (8.1 kB view details)

Uploaded Source

Built Distribution

pyproprop-0.0.3-py3-none-any.whl (7.1 kB view details)

Uploaded Python 3

File details

Details for the file pyproprop-0.0.3.tar.gz.

File metadata

  • Download URL: pyproprop-0.0.3.tar.gz
  • Upload date:
  • Size: 8.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyproprop-0.0.3.tar.gz
Algorithm Hash digest
SHA256 ac554b52be0e922b233f27ca67beef1fd7af5155eab3ea7a466408fcab0c632c
MD5 2604e8cb3a6f2c92f4a32aa05e6658cb
BLAKE2b-256 56bf688943f6fc7af45d931143ad47a0bb72433ed252892cc1c2c84fae9a07e2

See more details on using hashes here.

File details

Details for the file pyproprop-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pyproprop-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 7.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyproprop-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 b2301bc912ba75ea46133302a990b09f80494945a830eea0378185fbed036819
MD5 868431e8f2776a9568271e3e7b1420c7
BLAKE2b-256 d53c7ba9a149a755a9949494602c97b7ff2dcad05baa5897e580dd5a11f0961b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page