Skip to main content

Package for aiding writing classes with lots of similar simple properties without the boilerplate

Project description

Status

Docs

Documentation Status

PyPI

https://badge.fury.io/py/pyproprop.svg

Travis CI

https://travis-ci.com/brocksam/pyproprop.svg?branch=master

Appveyor

https://ci.appveyor.com/api/projects/status/github/brocksam/pyproprop?svg=true

What is pyproprop?

Do you often find yourself writing classes with properties such as:

from some_other_module import DefaultObject, some_type

class ExampleClass:

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

    @property
    def type_checked_attr(self):
        return self._type_checked_attr

    @type_checked_attr.setter
    def type_checked_attr(self, val):
        if not isinstance(val, some_type):
            msg = "`type_checked_attr` must be of `some_type`"
            raise TypeError(msg)
        self._type_checked_attr = val

    @property
    def bounded_numeric_attr(self):
        return self._bounded_numeric_attr

    @bounded_numeric_attr.setter
    def bounded_numeric_attr(self, val):
        val = float(val)
        lower_bound = -1.0
        upper_bound = 2.5
        if val < lower_bound:
            msg = f"`bounded_numeric_attr` must be greater than {lower_bound}"
            raise ValueError(msg)
        if val >= upper_bound:
            msg = (f"`bounded_numeric_attr` must be less than or equal to "
                   f"{upper_bound}.")
            raise ValueError(msg)
        self._type_checked_attr = val

    @property
    def specific_length_sequence_attr(self):
        return self._specific_length_sequence_attr

    @specific_length_sequence_attr.setter
    def specific_length_sequence_attr(self, val):
        if len(val) != 2:
            msg = "`specific_length_sequence` must be an iterable of length 2."
            raise ValueError(msg)
        self._specific_length_sequence_attr = val

    @property
    def obj_with_method_applied_value(self):
        return self._obj_with_method_applied_value

    @obj_with_method_applied_value.setter
    def obj_with_method_applied_value(self, val):
        val = str(val)
        self._obj_with_method_applied_value = val.title()

    @property
    def instantiate_default_if_none_attr(self):
        return self._instantiate_default_if_none_attr

    @instantiate_default_if_none_attr.setter
    def instantiate_default_if_none_attr(self, val):
        if val is None:
            val = DefaultObject()
        self._instantiate_default_if_none_attr = val

With pyproprop all of this boilerplate can be removed and instead the exact same class can be rewritten as:

from pyproprop import processed_property
from some_other_module import DefaultObject, some_type

class ExampleClass:

    type_checked_attr = processed_property(
        "type_checked_attr",
        description="property with enforced type of `some_type`",
        type=some_type,
    )
    bounded_numeric_attr = processed_property(
        "bounded_numeric_attr",
        description="numerical attribute with upper and lower bounds"
        type=float,
        cast=True,
        min=-1.0,
        max=2.5,
    )
    specific_length_sequence_attr = processed_property(
        "specific_length_sequence_attr",
        description="sequence of length exactly 2",
        len=2,
    )
    obj_with_method_applied_attr = processed_property(
        "obj_with_method_applied_attr",
        description="sting formatted to use title case"
        type=str,
        cast=True,
        method="title",
    )
    instantiate_default_if_none_attr = processed_property(
        "instantiate_default_if_none_attr",
        default=DefaultObject,
    )

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

Installation

The easiest way to install pyproprop is using the [Anaconda Python distribution](https://www.anaconda.com/what-is-anaconda/) and its included Conda package management system. To install pyproprop and its required dependencies, enter the following command at a command prompt:

conda install pyproprop

To install using pip, enter the following command at a command prompt:

pip install pyproprop

For more information, refer to the [installation documentation](https://pyproprop.readthedocs.io/en/latest/installation.html).

Contribute

  • Issue Tracker: github.com/brocksam/pyproprop/issues

  • Source Code: github.com/brocksam/pyproprop

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyproprop-0.0.4.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

pyproprop-0.0.4-py3-none-any.whl (8.1 kB view details)

Uploaded Python 3

File details

Details for the file pyproprop-0.0.4.tar.gz.

File metadata

  • Download URL: pyproprop-0.0.4.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyproprop-0.0.4.tar.gz
Algorithm Hash digest
SHA256 e4192207c9c80a458c835f515b6c940fad52ccdf4809fe53cce294dbd6176401
MD5 09dd184cb2faf8186b474ddfb1bf2456
BLAKE2b-256 22d80fd5808874a57dfabe04afb998effdaf139191934ff39b6d579a28e7da79

See more details on using hashes here.

File details

Details for the file pyproprop-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: pyproprop-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 8.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyproprop-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 63f82a5c2ec51574fdb4baf102f6ea94517c24fb00fbe9677641d6db11915796
MD5 dc7eebe13be310ee0b447fee92b1f691
BLAKE2b-256 992beb8851441204210e5b2f071e7a7d42969a1996c091eb02cfde73abfb6718

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page