Skip to main content

Package for aiding writing classes with lots of similar simple properties without the boilerplate

Project description

Package for aiding writing classes with lots of similar simple properties without the boilerplate.

Status

Latest Release

PyPI

Travis CI

https://travis-ci.com/brocksam/pyproprop.svg?branch=master

Docs

Documentation Status

Appveyor

https://ci.appveyor.com/api/projects/status/github/brocksam/pyproprop?svg=true

PyPI

PyPI - Downloads

Coverage

Codecov

Anaconda

Conda

License

https://img.shields.io/badge/license-MIT-brightgreen.svg

What is pyproprop?

Do you often find yourself writing classes with properties such as:

from some_other_module import DefaultObject, some_type

class ExampleClass:

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

    @property
    def type_checked_attr(self):
        return self._type_checked_attr

    @type_checked_attr.setter
    def type_checked_attr(self, val):
        if not isinstance(val, some_type):
            msg = "`type_checked_attr` must be of `some_type`"
            raise TypeError(msg)
        self._type_checked_attr = val

    @property
    def bounded_numeric_attr(self):
        return self._bounded_numeric_attr

    @bounded_numeric_attr.setter
    def bounded_numeric_attr(self, val):
        val = float(val)
        lower_bound = -1.0
        upper_bound = 2.5
        if val < lower_bound:
            msg = f"`bounded_numeric_attr` must be greater than {lower_bound}"
            raise ValueError(msg)
        if val >= upper_bound:
            msg = (f"`bounded_numeric_attr` must be less than or equal to "
                   f"{upper_bound}.")
            raise ValueError(msg)
        self._type_checked_attr = val

    @property
    def specific_length_sequence_attr(self):
        return self._specific_length_sequence_attr

    @specific_length_sequence_attr.setter
    def specific_length_sequence_attr(self, val):
        if len(val) != 2:
            msg = "`specific_length_sequence` must be an iterable of length 2."
            raise ValueError(msg)
        self._specific_length_sequence_attr = val

    @property
    def obj_with_method_applied_value(self):
        return self._obj_with_method_applied_value

    @obj_with_method_applied_value.setter
    def obj_with_method_applied_value(self, val):
        val = str(val)
        self._obj_with_method_applied_value = val.title()

    @property
    def instantiate_default_if_none_attr(self):
        return self._instantiate_default_if_none_attr

    @instantiate_default_if_none_attr.setter
    def instantiate_default_if_none_attr(self, val):
        if val is None:
            val = DefaultObject()
        self._instantiate_default_if_none_attr = val

With pyproprop all of this boilerplate can be removed and instead the exact same class can be rewritten as:

from pyproprop import processed_property
from some_other_module import DefaultObject, some_type

class ExampleClass:

    type_checked_attr = processed_property(
        "type_checked_attr",
        description="property with enforced type of `some_type`",
        type=some_type,
    )
    bounded_numeric_attr = processed_property(
        "bounded_numeric_attr",
        description="numerical attribute with upper and lower bounds"
        type=float,
        cast=True,
        min=-1.0,
        max=2.5,
    )
    specific_length_sequence_attr = processed_property(
        "specific_length_sequence_attr",
        description="sequence of length exactly 2",
        len=2,
    )
    obj_with_method_applied_attr = processed_property(
        "obj_with_method_applied_attr",
        description="sting formatted to use title case"
        type=str,
        cast=True,
        method="title",
    )
    instantiate_default_if_none_attr = processed_property(
        "instantiate_default_if_none_attr",
        default=DefaultObject,
    )

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

Installation

The easiest way to install pyproprop is using the Anaconda Python distribution and its included Conda package management system. To install pyproprop and its required dependencies, enter the following command at a command prompt:

conda install pyproprop

To install using pip, enter the following command at a command prompt:

pip install pyproprop

For more information, refer to the installation documentation.

Contribute

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyproprop-0.4.4.tar.gz (37.0 kB view details)

Uploaded Source

Built Distribution

pyproprop-0.4.4-py3-none-any.whl (36.5 kB view details)

Uploaded Python 3

File details

Details for the file pyproprop-0.4.4.tar.gz.

File metadata

  • Download URL: pyproprop-0.4.4.tar.gz
  • Upload date:
  • Size: 37.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyproprop-0.4.4.tar.gz
Algorithm Hash digest
SHA256 dfba1dd29905ee1b27b9843d9394dcf361788f26afbf0b1ec53c367c12f351a0
MD5 f4832ebe45ae009b8b917c63ad941d4a
BLAKE2b-256 0e2340a359a0ceca29de01b965992da61be7a0edac772c359604e559d1a8964a

See more details on using hashes here.

File details

Details for the file pyproprop-0.4.4-py3-none-any.whl.

File metadata

  • Download URL: pyproprop-0.4.4-py3-none-any.whl
  • Upload date:
  • Size: 36.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pyproprop-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 62a6c10468ec98ebddfc06f6a6cfe0869fb5916edba1ab506812f53fc94833f4
MD5 8e962e5dae7da78432daec13a1052591
BLAKE2b-256 647ab869cd5c0714d754ec38f810b44e5968a04de73871d8263d23aa9a6c00ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page