Skip to main content

Package for aiding writing classes with lots of similar simple properties without the boilerplate

Project description

Package for aiding writing classes with lots of similar simple properties without the boilerplate.

Status

Latest Release

PyPI

Docs

Documentation Status

PyPI

PyPI - Downloads

Anaconda

Conda

Coverage

Codecov

License

https://img.shields.io/badge/license-MIT-brightgreen.svg

What is Pyproprop?

Do you often find yourself writing classes with properties such as:

from some_other_module import DefaultObject, some_type

class ExampleClass:

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

    @property
    def type_checked_attr(self):
        return self._type_checked_attr

    @type_checked_attr.setter
    def type_checked_attr(self, val):
        if not isinstance(val, some_type):
            msg = "`type_checked_attr` must be of `some_type`"
            raise TypeError(msg)
        self._type_checked_attr = val

    @property
    def bounded_numeric_attr(self):
        return self._bounded_numeric_attr

    @bounded_numeric_attr.setter
    def bounded_numeric_attr(self, val):
        val = float(val)
        lower_bound = -1.0
        upper_bound = 2.5
        if val < lower_bound:
            msg = f"`bounded_numeric_attr` must be greater than {lower_bound}"
            raise ValueError(msg)
        if val >= upper_bound:
            msg = (f"`bounded_numeric_attr` must be less than or equal to "
                   f"{upper_bound}.")
            raise ValueError(msg)
        self._type_checked_attr = val

    @property
    def specific_length_sequence_attr(self):
        return self._specific_length_sequence_attr

    @specific_length_sequence_attr.setter
    def specific_length_sequence_attr(self, val):
        if len(val) != 2:
            msg = "`specific_length_sequence` must be an iterable of length 2."
            raise ValueError(msg)
        self._specific_length_sequence_attr = val

    @property
    def obj_with_method_applied_value(self):
        return self._obj_with_method_applied_value

    @obj_with_method_applied_value.setter
    def obj_with_method_applied_value(self, val):
        val = str(val)
        self._obj_with_method_applied_value = val.title()

    @property
    def instantiate_default_if_none_attr(self):
        return self._instantiate_default_if_none_attr

    @instantiate_default_if_none_attr.setter
    def instantiate_default_if_none_attr(self, val):
        if val is None:
            val = DefaultObject()
        self._instantiate_default_if_none_attr = val

With Pyproprop all of this boilerplate can be removed and instead the exact same class can be rewritten as:

from pyproprop import processed_property
from some_other_module import DefaultObject, some_type

class ExampleClass:

    type_checked_attr = processed_property(
        "type_checked_attr",
        description="property with enforced type of `some_type`",
        type=some_type,
    )
    bounded_numeric_attr = processed_property(
        "bounded_numeric_attr",
        description="numerical attribute with upper and lower bounds"
        type=float,
        cast=True,
        min=-1.0,
        max=2.5,
    )
    specific_length_sequence_attr = processed_property(
        "specific_length_sequence_attr",
        description="sequence of length exactly 2",
        len=2,
    )
    obj_with_method_applied_attr = processed_property(
        "obj_with_method_applied_attr",
        description="sting formatted to use title case"
        type=str,
        cast=True,
        method="title",
    )
    instantiate_default_if_none_attr = processed_property(
        "instantiate_default_if_none_attr",
        default=DefaultObject,
    )

    def __init__(self,
                 type_checked_value,
                 bounded_numeric_value,
                 specific_length_sequence_value,
                 obj_with_method_applied_value,
                 ):
        self.type_check_attr = type_checked_value
        self.bounded_numeric_attr = bounded_numeric_value
        self.specific_length_sequence_attr = specific_length_sequence_value
        self.obj_with_method_applied_attr = obj_with_method_applied_value
        self.instantiate_default_if_none_attr = None

Installation

The easiest way to install Pyproprop is using the Anaconda Python distribution and its included Conda package management system. To install Pyproprop and its required dependencies, enter the following command at a command prompt:

conda install pyproprop

To install using pip, enter the following command at a command prompt:

pip install pyproprop

For more information, refer to the installation documentation.

Contribute

License

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyproprop-0.4.5.tar.gz (24.6 kB view details)

Uploaded Source

Built Distribution

pyproprop-0.4.5-py3-none-any.whl (3.1 kB view details)

Uploaded Python 3

File details

Details for the file pyproprop-0.4.5.tar.gz.

File metadata

  • Download URL: pyproprop-0.4.5.tar.gz
  • Upload date:
  • Size: 24.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for pyproprop-0.4.5.tar.gz
Algorithm Hash digest
SHA256 61a312e443dd7d7374c34b354a914b6b61e2c973a260ee75bda8cbdb36efbcdc
MD5 ce3fb03f0b4acfeb0141bf0dba9c58b8
BLAKE2b-256 46670e642dd7e75efb4fb47dbef4e70e193e7cdce61308248d1aa551167bf4b2

See more details on using hashes here.

File details

Details for the file pyproprop-0.4.5-py3-none-any.whl.

File metadata

  • Download URL: pyproprop-0.4.5-py3-none-any.whl
  • Upload date:
  • Size: 3.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for pyproprop-0.4.5-py3-none-any.whl
Algorithm Hash digest
SHA256 9c0bfdae22aa6e158439b7b83e6a8846b053cc62eb89e47195a5f9d549eba74e
MD5 9c7f85487121baf3da47d750cc75cf0d
BLAKE2b-256 1fc7c7bd1e71f2420c0639ac31a2c5dc39e79f8d3a255e7b4d1ff7e5498539f6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page