Skip to main content

PyQIR parses, generates and evaluates the Quantum Intermediate Representation.

Project description

PyQIR

The pyqir package provides the ability to generate QIR as well as an easy way to parse and analyze QIR.

QIR generation is intended to be used by code automating translation processes enabling the conversion in some format to QIR via Python; i.e., this is a low-level API intended to be used as a bridge to existing Python frameworks enabling the generation of QIR rather than directly consumed by an end-user. It is not intended to be used as a framework for algorithm and application development.

Installation

The package is released on PyPI and can be installed via pip:

pip install pyqir

Examples

PyQIR examples can be found in this repository's examples folder.

Generation

The following code creates QIR for a Bell pair before measuring each qubit and returning the result. The unoptimized QIR is displayed in the terminal when executed:

from pyqir import BasicQisBuilder, SimpleModule

module = SimpleModule("Bell", num_qubits=2, num_results=2)
qis = BasicQisBuilder(module.builder)

qis.h(module.qubits[0])
qis.cx(module.qubits[0], module.qubits[1])

qis.mz(module.qubits[0], module.results[0])
qis.mz(module.qubits[1], module.results[1])

print(module.ir())

The QIR output will look like:

; ModuleID = 'Bell'
source_filename = "Bell"

%Qubit = type opaque
%Result = type opaque

define void @main() #0 {
entry:
  call void @__quantum__qis__h__body(%Qubit* null)
  call void @__quantum__qis__cnot__body(%Qubit* null, %Qubit* inttoptr (i64 1 to %Qubit*))
  call void @__quantum__qis__mz__body(%Qubit* null, %Result* null)
  call void @__quantum__qis__mz__body(%Qubit* inttoptr (i64 1 to %Qubit*), %Result* inttoptr (i64 1 to %Result*))
  ret void
}

declare void @__quantum__qis__h__body(%Qubit*)

declare void @__quantum__qis__cnot__body(%Qubit*, %Qubit*)

declare void @__quantum__qis__mz__body(%Qubit*, %Result* writeonly) #1

attributes #0 = { "entry_point" "num_required_qubits"="2" "num_required_results"="2" "output_labeling_schema" "qir_profiles"="custom" }
attributes #1 = { "irreversible" }

!llvm.module.flags = !{!0, !1, !2, !3}

!0 = !{i32 1, !"qir_major_version", i32 1}
!1 = !{i32 7, !"qir_minor_version", i32 0}
!2 = !{i32 1, !"dynamic_qubit_management", i1 false}
!3 = !{i32 1, !"dynamic_result_management", i1 false}

Contributing

There are many ways in which you can contribute to PyQIR, whether by contributing a feature or by engaging in discussions; we value contributions in all shapes and sizes! We refer to this document for guidelines and ideas for how you can get involved.

Contributing a pull request to this repo requires to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. A CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately. Simply follow the instructions provided by the bot. You will only need to do this once.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyqir-0.8.2-cp37-abi3-win_amd64.whl (1.4 MB view details)

Uploaded CPython 3.7+ Windows x86-64

pyqir-0.8.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyqir-0.8.2-cp37-abi3-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyqir-0.8.2-cp37-abi3-macosx_10_7_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7+ macOS 10.7+ x86-64

File details

Details for the file pyqir-0.8.2-cp37-abi3-win_amd64.whl.

File metadata

  • Download URL: pyqir-0.8.2-cp37-abi3-win_amd64.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for pyqir-0.8.2-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 c7a0b441a511a30168423016391246a10a318b272afb21005a4c2c69abb7545e
MD5 14a15b1084e39710555cefe9f8aa2254
BLAKE2b-256 b4204276604f34e4df5e006394dff2f1b4f4d850e5bea02b67fc023d7794a1df

See more details on using hashes here.

File details

Details for the file pyqir-0.8.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqir-0.8.2-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b66cc0bb1a422e6c9f3821ba6d69e10896c7adf9b6751252934ec1d6de989752
MD5 fe14733965a8b11a5ef2d1711b78bb3b
BLAKE2b-256 dd2007197ac6417e8b5fc203eb4e32e74d695d478aee265ed90a4bf4fc0127bc

See more details on using hashes here.

File details

Details for the file pyqir-0.8.2-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqir-0.8.2-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd993ee01e7120ae0932df6d27c878819664c65120cbffbb03b2c8dd17f79299
MD5 e2d73ad606fe9f870bd5a1bb901d9d57
BLAKE2b-256 2532b32d3ca5269217f09a03de39ed82cc336b83b21ce20e35c431172543e20b

See more details on using hashes here.

File details

Details for the file pyqir-0.8.2-cp37-abi3-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pyqir-0.8.2-cp37-abi3-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e50136edcd7051bbb7a3096c4b24f0cb5b8a866ead8590de7d3f7692141d8d84
MD5 e2ba38b81a150f87b9e03fba017ea7eb
BLAKE2b-256 06af38983c83a22f5b10ff6108e0ebc9f9141ac5660e73a513fa2d257b931603

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page