Python/NumPy compatible geographical index based on s2geometry
Project description
pys2index
Python / NumPy compatible geographical index based on s2geometry.
This project doesn't provide Python wrappers for the whole s2geometry
library.
Instead, it aims to provide some index wrappers with an API similar to
scipy.spatial.cKDTree.
Build Dependencies
- C++17 compiler
- CMake
- s2geometry
- scikit-build-core
- xtensor-python
- pybind11
- Python
- NumPy
Installation
Using conda
pys2index can be installed using conda (or mamba):
$ conda install pys2index -c conda-forge
From source
First, clone this repository:
$ git clone https://github.com/benbovy/pys2index
$ cd pys2index
You can install all the dependencies using conda (or mamba):
$ conda install python cxx-compiler numpy s2geometry pybind11 xtensor-python cmake scikit-build-core -c conda-forge
Build and install this library
$ python -m pip install . --no-build-isolation
Usage
In [1]: import numpy as np
In [2]: from pys2index import S2PointIndex
In [3]: latlon_points = np.array([[40.0, 15.0],
...: [-20.0, 53.0],
...: [81.0, 153.0]])
...:
In [4]: index = S2PointIndex(latlon_points)
In [5]: query_points = np.array([[-10.0, 60.0],
...: [45.0, -20.0],
...: [75.0, 122.0]])
...:
In [6]: distances, positions = index.query(query_points)
In [7]: distances
Out[7]: array([12.06534671, 26.07312392, 8.60671311])
In [8]: positions
Out[8]: array([1, 0, 2])
In [9]: index.get_cell_ids()
Out[9]: array([1386017682036854979, 2415595305706115691, 6525033740530229539],
dtype=uint64)
Running the tests
Running the tests requires pytest
(it is also available on conda-forge).
$ pytest .
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pys2index-0.1.5.tar.gz
(14.0 kB
view details)
File details
Details for the file pys2index-0.1.5.tar.gz
.
File metadata
- Download URL: pys2index-0.1.5.tar.gz
- Upload date:
- Size: 14.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5b18a010afba73a2a85a679cc62450d3bed8e6fc99a3f97d393f351a6bf2d71 |
|
MD5 | 16d6a3083adaec8e5aacce46fb3970b5 |
|
BLAKE2b-256 | c5041316bc9c5c38f1fe6e7f3e0a14b19333d9087f5b67312b38b64483366352 |