Skip to main content

PyScaffold extension for Data Science projects

Project description

Build Status Coveralls PyPI-Server

pyscaffoldext-dsproject

PyScaffold extension tailored for Data Science projects. This extension is inspired by cookiecutter-data-science and enhanced in many ways. The main differences are that it

  1. advocates a proper Python package structure that can be shipped and distributed,
  2. uses a conda environment instead of something virtualenv-based and is thus more suitable for data science projects,
  3. more default configurations for Sphinx, py.test, pre-commit, etc. to foster clean coding and best practices.

Also consider using dvc to version control and share your data within your team.

The final directory structure looks like:

├── AUTHORS.rst             <- List of developers and maintainers.
├── CHANGELOG.rst           <- Changelog to keep track of new features and fixes.
├── LICENSE.txt             <- License as chosen on the command-line.
├── README.md               <- The top-level README for developers.
├── data
│   ├── external            <- Data from third party sources.
│   ├── interim             <- Intermediate data that has been transformed.
│   ├── processed           <- The final, canonical data sets for modeling.
│   └── raw                 <- The original, immutable data dump.
├── docs                    <- Directory for Sphinx documentation in rst or md.
├── environment.yaml        <- The conda environment file for reproducibility.
├── models                  <- Trained and serialized models, model predictions,
│                              or model summaries.
├── notebooks               <- Jupyter notebooks. Naming convention is a number (for
│                              ordering), the creator's initials and a description,
│                              e.g. `1.0-fw-initial-data-exploration`.
├── references              <- Data dictionaries, manuals, and all other materials.
├── reports                 <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures             <- Generated plots and figures for reports.
├── scripts                 <- Analysis and production scripts which import the
│                              actual PYTHON_PKG, e.g. train_model.
├── setup.cfg               <- Declarative configuration of your project.
├── setup.py                <- Make this project pip installable with `pip install -e`
│                              or `python setup.py develop`.
├── src
│   └── PYTHON_PKG          <- Actual Python package where the main functionality goes.
├── tests                   <- Unit tests which can be run with `py.test` or
│                              `python setup.py test`.
├── .coveragerc             <- Configuration for coverage reports of unit tests.
├── .isort.cfg              <- Configuration for git hook that sorts imports.
└── .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

See a demonstration of the initial project structure under dsproject-demo and also check out the the documentation of PyScaffold for more information.

Usage

Just install this package with pip install pyscaffoldext-dsproject and note that putup -h shows a new option --dsproject. Creating a data science project is then as easy as:

putup --dsproject my_ds_project

Note

This project has been set up using PyScaffold 3.2. For details and usage information on PyScaffold see https://pyscaffold.org/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyscaffoldext-dsproject-0.3.tar.gz (20.6 kB view details)

Uploaded Source

Built Distribution

pyscaffoldext_dsproject-0.3-py2.py3-none-any.whl (12.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyscaffoldext-dsproject-0.3.tar.gz.

File metadata

  • Download URL: pyscaffoldext-dsproject-0.3.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for pyscaffoldext-dsproject-0.3.tar.gz
Algorithm Hash digest
SHA256 e93e4ba915b96ea445400014ee3fb49f3bea1418be0959b4fcadfcf566c4e1a9
MD5 57a8e32a5ea86384361d358d94e2a8fc
BLAKE2b-256 b25e7b9135ff49b270397cc406a422f265589e5e91d6c9ef89f9b96b1e809d78

See more details on using hashes here.

File details

Details for the file pyscaffoldext_dsproject-0.3-py2.py3-none-any.whl.

File metadata

  • Download URL: pyscaffoldext_dsproject-0.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for pyscaffoldext_dsproject-0.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b2b60c5b70323cde935271815e69b274013ffce44064349a374c1ba01e56d85b
MD5 0af0a6884d774b38803767b137f8b362
BLAKE2b-256 e39cd4ac379dcf81fa8f141e494389ad8fac08dc036d2c54d005e545de6d1e7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page