Skip to main content

PyScaffold extension for Data Science projects

Project description

Build Status Coveralls PyPI-Server

pyscaffoldext-dsproject

PyScaffold extension tailored for Data Science projects. This extension is inspired by cookiecutter-data-science and enhanced in many ways. The main differences are that it

  1. advocates a proper Python package structure that can be shipped and distributed,
  2. uses a conda environment instead of something virtualenv-based and is thus more suitable for data science projects,
  3. more default configurations for Sphinx, py.test, pre-commit, etc. to foster clean coding and best practices.

Also consider using dvc to version control and share your data within your team. Read this blogpost to learn how to work with JupyterLab notebooks efficiently by using a data science project structure like this.

The final directory structure looks like:

├── AUTHORS.rst             <- List of developers and maintainers.
├── CHANGELOG.rst           <- Changelog to keep track of new features and fixes.
├── LICENSE.txt             <- License as chosen on the command-line.
├── README.md               <- The top-level README for developers.
├── configs                 <- Directory for configurations of model & application.
├── data
│   ├── external            <- Data from third party sources.
│   ├── interim             <- Intermediate data that has been transformed.
│   ├── processed           <- The final, canonical data sets for modeling.
│   └── raw                 <- The original, immutable data dump.
├── docs                    <- Directory for Sphinx documentation in rst or md.
├── environment.yaml        <- The conda environment file for reproducibility.
├── models                  <- Trained and serialized models, model predictions,
│                              or model summaries.
├── notebooks               <- Jupyter notebooks. Naming convention is a number (for
│                              ordering), the creator's initials and a description,
│                              e.g. `1.0-fw-initial-data-exploration`.
├── references              <- Data dictionaries, manuals, and all other materials.
├── reports                 <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures             <- Generated plots and figures for reports.
├── scripts                 <- Analysis and production scripts which import the
│                              actual PYTHON_PKG, e.g. train_model.
├── setup.cfg               <- Declarative configuration of your project.
├── setup.py                <- Use `python setup.py develop` to install for development or
|                              or create a distribution with `python setup.py bdist_wheel`.
├── src
│   └── PYTHON_PKG          <- Actual Python package where the main functionality goes.
├── tests                   <- Unit tests which can be run with `py.test`.
├── .coveragerc             <- Configuration for coverage reports of unit tests.
├── .isort.cfg              <- Configuration for git hook that sorts imports.
└── .pre-commit-config.yaml <- Configuration of pre-commit git hooks.

See a demonstration of the initial project structure under dsproject-demo and also check out the the documentation of PyScaffold for more information.

Usage

Just install this package with pip install pyscaffoldext-dsproject and note that putup -h shows a new option --dsproject. Creating a data science project is then as easy as:

putup --dsproject my_ds_project

Making Changes & Contributing

This project uses pre-commit, please make sure to install it before making any changes:

pip install pre-commit
cd pyscaffoldext-dsproject
pre-commit install

It is a good idea to update the hooks to the latest version:

pre-commit autoupdate

Please also check PyScaffold's contribution guidelines.

Note

This project has been set up using PyScaffold 3.2. For details and usage information on PyScaffold see https://pyscaffold.org/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyscaffoldext-dsproject-0.5a1.tar.gz (24.1 kB view details)

Uploaded Source

Built Distribution

pyscaffoldext_dsproject-0.5a1-py2.py3-none-any.whl (12.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pyscaffoldext-dsproject-0.5a1.tar.gz.

File metadata

  • Download URL: pyscaffoldext-dsproject-0.5a1.tar.gz
  • Upload date:
  • Size: 24.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.9

File hashes

Hashes for pyscaffoldext-dsproject-0.5a1.tar.gz
Algorithm Hash digest
SHA256 3b1f46775878a2c28c78a992d3115b6f0371f014a04c71fc6c152c250ff2cf75
MD5 61711c8b8caeafc313bf2547122941aa
BLAKE2b-256 3249722973c93904c5d510b571a3108ba72fa4876cace8309b17495fdfec33ae

See more details on using hashes here.

File details

Details for the file pyscaffoldext_dsproject-0.5a1-py2.py3-none-any.whl.

File metadata

  • Download URL: pyscaffoldext_dsproject-0.5a1-py2.py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.9

File hashes

Hashes for pyscaffoldext_dsproject-0.5a1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f3224b5de105eee98045a38302e95de5b2e9a41a933f11f507e7f8eb9fae2c0d
MD5 27594e17a98d51080bcceecafccfa0b5
BLAKE2b-256 b7c90a738317ad2ac1a0f2057e57575a31c4b06abe31a131a1c02359d1dcde36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page