Skip to main content

Python Bindings for the Seldon Framework

Project description

PySeldonlib

pyseldonlib PySeldonlib is a Python Package for Opinion Dynamics Simulation, an extension of the Seldon Framework. It provides:

  • Tools for the simulation of various Opinion Dynamics Models like the classical DeGroot Model, Deffuant Model, Activity Driven Model, etc.
  • Tools to create, manipulate, and study complex networks which are either randomly generated or provided by the user.
  • A clean and robust interface for conducting the simulations.

Opinion Dynamics

Opinion dynamics is a field of study within the realm of complex systems and sociophysics that explores how opinions, beliefs, and attitudes evolve and spread within social networks. It combines elements of physics, social science, and mathematics to understand the mechanisms driving opinion formation and change under various influences, such as personal convictions, peer pressure, media impact, and societal norms.

Our work contributes to this interdisciplinary field by providing robust tools for simulation and analysis, aiding in the understanding of complex opinion dynamics phenomena Seldon-Code.

DeGroot Model Example

The DeGroot model is a model of social influence. It describes how agents in a network can reach a consensus by updating their opinions based on the opinions of their neighbors. The DeGroot model is a simple model of social influence that has been studied extensively in the literature. It is used to model a wide range of social phenomena, such as the spread of information, the formation of opinions, and the emergence of social norms.

Below is an example of reaching consensus in a network using the DeGroot model. We will create a network of 20 agents with random opinions and random connections between them. We will then conduct the simulation.

Initial Opinions

Initial opinions of the agents in the network in the range of [0,1] are shown below:

Initial Opinions

Final Opinions

Final opinions of the agents in the network after the simulation are shown below:

Final Opinions

We can conclude that the agents have reached a consensus after the simulation.

Reference

Usage

import pyseldonlib

pyseldonlib.run_simulation_from_config_file(config_file_path = '/path/to/config/file')
import pyseldonlib

model = pyseldonlib.DeGroot_Model(max_iterations=1000,
                               convergence_tol=1e-6,
                               rng_seed=120, 
                               other_settings=other_settings)

output_dir_path = str("./output")

model.run(output_dir_path)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyseldonlib-1.0.0.tar.gz (3.2 MB view details)

Uploaded Source

Built Distributions

pyseldonlib-1.0.0-cp313-cp313-win_amd64.whl (656.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

pyseldonlib-1.0.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pyseldonlib-1.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (763.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pyseldonlib-1.0.0-cp313-cp313-macosx_12_6_x86_64.whl (539.7 kB view details)

Uploaded CPython 3.13 macOS 12.6+ x86-64

pyseldonlib-1.0.0-cp313-cp313-macosx_12_6_arm64.whl (514.5 kB view details)

Uploaded CPython 3.13 macOS 12.6+ ARM64

pyseldonlib-1.0.0-cp312-cp312-win_amd64.whl (656.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyseldonlib-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyseldonlib-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (763.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyseldonlib-1.0.0-cp312-cp312-macosx_12_6_x86_64.whl (539.7 kB view details)

Uploaded CPython 3.12 macOS 12.6+ x86-64

pyseldonlib-1.0.0-cp312-cp312-macosx_12_6_arm64.whl (514.5 kB view details)

Uploaded CPython 3.12 macOS 12.6+ ARM64

pyseldonlib-1.0.0-cp311-cp311-win_amd64.whl (658.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyseldonlib-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyseldonlib-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (764.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyseldonlib-1.0.0-cp311-cp311-macosx_12_6_x86_64.whl (524.1 kB view details)

Uploaded CPython 3.11 macOS 12.6+ x86-64

pyseldonlib-1.0.0-cp311-cp311-macosx_12_6_arm64.whl (499.4 kB view details)

Uploaded CPython 3.11 macOS 12.6+ ARM64

pyseldonlib-1.0.0-cp310-cp310-win_amd64.whl (656.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyseldonlib-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pyseldonlib-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (763.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyseldonlib-1.0.0-cp310-cp310-macosx_12_6_x86_64.whl (522.8 kB view details)

Uploaded CPython 3.10 macOS 12.6+ x86-64

pyseldonlib-1.0.0-cp310-cp310-macosx_12_6_arm64.whl (498.7 kB view details)

Uploaded CPython 3.10 macOS 12.6+ ARM64

pyseldonlib-1.0.0-cp39-cp39-win_amd64.whl (656.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyseldonlib-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyseldonlib-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (763.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyseldonlib-1.0.0-cp39-cp39-macosx_12_6_x86_64.whl (522.9 kB view details)

Uploaded CPython 3.9 macOS 12.6+ x86-64

pyseldonlib-1.0.0-cp39-cp39-macosx_12_6_arm64.whl (498.7 kB view details)

Uploaded CPython 3.9 macOS 12.6+ ARM64

File details

Details for the file pyseldonlib-1.0.0.tar.gz.

File metadata

  • Download URL: pyseldonlib-1.0.0.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for pyseldonlib-1.0.0.tar.gz
Algorithm Hash digest
SHA256 a633dd67a2c04a6825ca04f6f050035bb5348b6cd79dfe17c8452c3ac0fe57a7
MD5 ad3e261466994ce441d90c0bf9fe1138
BLAKE2b-256 d18e65a6a604b13c665e34f33c10d8b1f64b3d9c12f799d9015b437d1d251a5a

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 283b523c54ea38f5322f13a42397f30c221f244e3fb6834b5c2a7a5a4e6b1259
MD5 a2ba7cfa2c3b1a5fed825899306bc65c
BLAKE2b-256 db48d777f537fff25adf0f477e2acafb5b2a28b9f99c1aa648e1238441c88109

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a20dc006c94055a0a651c3bf7573abce7d221ce7b9a42626023c8f3d72fbfd0d
MD5 cd86e08d6b8fe1d1c010d8c6e357e60b
BLAKE2b-256 150bc10149d038a32e572d7205fb6e4bac622f2cc10ef9b6b394e1afa12295a6

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c55d68459c8619fae0285b5994551cc0a1def9bd987d26536180f8f5268b8b8f
MD5 d9ae2078b57256b51bee81e6b7f43091
BLAKE2b-256 df5f35b0bf4da8667bf2dcda3bbc1a8c1670d7de120f925cfd08289b2be69745

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp313-cp313-macosx_12_6_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp313-cp313-macosx_12_6_x86_64.whl
Algorithm Hash digest
SHA256 dbcfa97a4b539f3ed61fd5ed98c8218206f408d97d03c70615846944bf988433
MD5 6544502cf6bfe0a27a1de18e29184efc
BLAKE2b-256 86fc4f9827ef61cccb7e6ed66277fd376139bb08cc663afc2f3c415a2dc3dd9b

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp313-cp313-macosx_12_6_arm64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp313-cp313-macosx_12_6_arm64.whl
Algorithm Hash digest
SHA256 7fb09aaf66be9b537247db29f753539ab4f6a7423e8aa58e91bc933101dfa4e6
MD5 b2ec11d6c25ef58b5221fca6f14349f9
BLAKE2b-256 4d483909529e5739d6b5e4d869b846ea617fa849e98741465d8b78bf0c752ea2

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 bf827e200420f44e6f1256d2eda95661a775ea80d20e314cda38a537edb90c02
MD5 73419fc265b71d6891e7d715973f9ab4
BLAKE2b-256 05fbe104287e9c0268e451a0c2525cf63fc3d06544e56b0a0b2d24653625e4ce

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f7441925cc42c3514b3fa6b9a4859c4b98631f1639c6da9727bd7f3006b010f5
MD5 a5949201e39592e0daa7ccffd3f4aa29
BLAKE2b-256 8c9fa336746d0eede99502405dcd4a08a405bfcfb3b240334fbffb8dc9f29e9e

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 836a93cd5bed81c3f07962c6f536c45b257b51e9d1f068c977607b3fed35c1a3
MD5 9c6712d8a7fb76e300c6955fe8f008f8
BLAKE2b-256 dbb44fc60df0899f49c4d723b21fae9d450bb5fdc48650e3f9db0f85fb05ee9b

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp312-cp312-macosx_12_6_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp312-cp312-macosx_12_6_x86_64.whl
Algorithm Hash digest
SHA256 aaeb3fb64fa47cb395b9e216f51036dbcad67c7bb0590c7af20743752b8a5660
MD5 d6f3ac28889db98b9a192cebf5f06fb2
BLAKE2b-256 b0373966c33023e303e4144339a4459b3343809ad8e67f7bf69b494a3efbe8e3

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp312-cp312-macosx_12_6_arm64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp312-cp312-macosx_12_6_arm64.whl
Algorithm Hash digest
SHA256 f3be8c248952b054eae7d2b266b5e1a358933fec80f455b1768e8e68302ee7e1
MD5 dc290b6fd62c41d7d4901d693aa2dd39
BLAKE2b-256 fae731906f3ec9d6d6cdb633b2ddaed746ebe1a6a6357cc6b4edcebf40ee64c4

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c18acd555e7a574ff3c1a7672e759d364cd57d73911f8dfcceedf3ca94294627
MD5 5d967538db691165dfd338ced30a9441
BLAKE2b-256 1f2f79ee2c7625512c0b94be125465e4e64a2f36000244a6b4d49520af88820d

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1064007a175528eebe558db1e4052ef57b049d1c84bc60897dc62030f97a367e
MD5 86376633c5282ba5a5d500967f16d280
BLAKE2b-256 f176270e23852f80d9eea4a8e4d68684ad1b7e6e8063ea1d908f86dba2c1d8e6

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af39b27cac52fedafbe424ce51922f2fc7fff066b54e5a157b48901d13448e03
MD5 6d63b732bb9e76e918529e1073761ac9
BLAKE2b-256 8ae5b88f0305833fdcfec3419d4e4535db9db2933245145fe615d16d78093a8a

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp311-cp311-macosx_12_6_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp311-cp311-macosx_12_6_x86_64.whl
Algorithm Hash digest
SHA256 02a095e9366744a680115743d15d590fca6ef8bdd3ae03b4419bc156ff6c48ed
MD5 52d57cb98bdb185e3e5bb13e5835905f
BLAKE2b-256 4c43b031e474b4733d37c4b2ba39956d9bf31407f7fe38c55acf8d0f0c8659e9

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp311-cp311-macosx_12_6_arm64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp311-cp311-macosx_12_6_arm64.whl
Algorithm Hash digest
SHA256 46a40fd363016a5527e84aaab64e3c623a43ca5e90a1054888abd4cd5a047330
MD5 17e65357fd3e177e8662ffda08971569
BLAKE2b-256 7c5cb7415394ebf3b484b715108a80e3d4c14c4046ca29cc7cc9d82fb6e03816

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 20ca16c1dcdd3e9c8e2122077363fde9d6f29132e59acb03b8a11d9a4888f44a
MD5 99c52659d8b4cf95dc5271b90af9f64c
BLAKE2b-256 3c7577960fa9284bcf05424a0b122de45ccea8416d444cb72cab112faba58703

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1d0d1ae17f1574b4654290cc8407ea113a5f75cb9e77686f62e9c7626af13fd7
MD5 ed37b1f06e6a519e742709444567f886
BLAKE2b-256 3a57199cb7440700b46faec204030c24c71b4e1dd044f8271f30a55837e642d2

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b0d53e20ce44b13a235539d813a2498df88c204e27e41ffa7a8db4b543f3bff
MD5 3dc733e60e69eb2a4d9bab19986dbc82
BLAKE2b-256 fd4acdeecd5298d643a202e59fe43c19504ef7c3698095eef62cbc91946250a8

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp310-cp310-macosx_12_6_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp310-cp310-macosx_12_6_x86_64.whl
Algorithm Hash digest
SHA256 32f66502bd3c59158f611d03e402868ec6055fcc005c025878926d8e8ddb5a19
MD5 862b3fd05ba42a20111dd455e411fcaa
BLAKE2b-256 6db0a0251fc7f8b69aa6383864af5c9441295868f149dc0555798ae49d3db230

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp310-cp310-macosx_12_6_arm64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp310-cp310-macosx_12_6_arm64.whl
Algorithm Hash digest
SHA256 fbb46fca55044c31043bb3c2aefbd3f20e246203262fa9fe53d7db5c3de3c967
MD5 4843769b731464918c722ee4c86c908c
BLAKE2b-256 a218bfd79218302e9faeb1e733f208fb705d3e8da12a2a90f781dc11737d26ac

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 837c6c3cec0920ac0bfcbb0be7781d84d7195d9e13a50ce0b9bd21f4064a698b
MD5 15f108802c668de0476ac1665269c7df
BLAKE2b-256 dd5ac3330d2958845345198565cb8d27c29bf8a4eefcddd8a886696d46c26b31

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 64adac235ee4346cc5026c21a91074eaffac0ed6ee7958c22e908c7adcc203b5
MD5 ca4460aa0a8f5e24657ca1c895dad53e
BLAKE2b-256 eab81f8d80be20ddf9f4b5fffd6462f1c06f90044e5cc8a5d78256eb35139c4a

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 575ff03e334ac4e8cd497940c9b82ffbb251805c03184afbd25ca852b4a6c730
MD5 33da8599c2aa9b5e158f3b625c1ce4da
BLAKE2b-256 9c10c3270775c62fb5edeba90ed3ba791660fad83a5830feebe9ed028c42a5ae

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp39-cp39-macosx_12_6_x86_64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp39-cp39-macosx_12_6_x86_64.whl
Algorithm Hash digest
SHA256 c03c38ebb4604e9ba946095be7bac0acd95c6656d681a9eaaa0c899eb8c3b515
MD5 90a96c92f24b88e978b5e3a48fa50f42
BLAKE2b-256 85ebf2c8dc9814f56219061c7a7d3cb15e2c1b430f23414e094389d46c3f91ea

See more details on using hashes here.

File details

Details for the file pyseldonlib-1.0.0-cp39-cp39-macosx_12_6_arm64.whl.

File metadata

File hashes

Hashes for pyseldonlib-1.0.0-cp39-cp39-macosx_12_6_arm64.whl
Algorithm Hash digest
SHA256 a956ff2ccee205154344d7db2b308b38a0c9114397862dec472aefec4bd64094
MD5 8c90c1161e9c12cb4997ce5ea0a30502
BLAKE2b-256 4dd08655d240f1552e6a9ad8f3410a9998c77b3d5fa4df2eddf751dfc8f564cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page