Skip to main content

simdjson bindings for python

Project description

PyPI - License Tests

pysimdjson

Python bindings for the simdjson project, a SIMD-accelerated JSON parser. If SIMD instructions are unavailable a fallback parser is used, making pysimdjson safe to use anywhere.

Bindings are currently tested on OS X, Linux, and Windows for Python version 3.5 to 3.9.

🎉 Installation

If binary wheels are available for your platform, you can install from pip with no further requirements:

pip install pysimdjson

Binary wheels are available for the following:

py3.5 py3.6 py3.7 py3.8 pypy3
OS X (x86_64) y y y y y
Windows (x86_64) x x y y x
Linux (x86_64) y y y y x
Linux (ARM64) y y y y x

If binary wheels are not available for your platform, you'll need a C++11-capable compiler to compile the sources:

pip install 'pysimdjson[dev]' --no-binary :all:

Both simddjson and pysimdjson support FreeBSD and Linux on ARM when built from source.

⚗ Development and Testing

This project comes with a full test suite. To install development and testing dependencies, use:

pip install -e ".[dev]"

To also install 3rd party JSON libraries used for running benchmarks, use:

pip install -e ".[benchmark]"

To run the tests, just type pytest. To also run the benchmarks, use pytest --runslow.

To properly test on Windows, you need both a recent version of Visual Studio (VS) as well as VS2015, patch 3. Older versions of CPython required portable C/C++ extensions to be built with the same version of VS as the interpreter. Use the Developer Command Prompt to easily switch between versions.

How It Works

This project uses pybind11 to generate the low-level bindings on top of the simdjson project. You can use it just like the built-in json module, or use the simdjson-specific API for much better performance.

import simdjson
doc = simdjson.loads('{"hello": "world"}')

🚀 Making things faster

pysimdjson provides an api compatible with the built-in json module for convenience, and this API is pretty fast (beating or tying all other Python JSON libraries). However, it also provides a simdjson-specific API that can perform significantly better.

Don't load the entire document

95% of the time spent loading a JSON document into Python is spent in the creation of Python objects, not the actual parsing of the document. You can avoid all of this overhead by ignoring parts of the document you don't want.

pysimdjson supports this in two ways - the use of JSON pointers via at(), or proxies for objects and lists.

import simdjson
parser = simdjson.Parser()
doc = parser.parse(b'{"res": [{"name": "first"}, {"name": "second"}]')

For our sample above, we really just want the second entry in res, we don't care about anything else. We can do this two ways:

assert doc['res'][1]['name'] == 'second' # True
assert doc.at('res/1/name') == 'second' # True

Both of these approaches will be much faster than using load/s(), since they avoid loading the parts of the document we didn't care about.

Both Object and Array have a mini property that returns their entire content as a minified Python str. A message router for example would only parse the document and retrieve a single property, the destination, and forward the payload without ever turning it into a Python object. Here's a (bad) example:

import simdjson

@app.route('/store', methods=['POST'])
def store():
    parser = simdjson.Parser()
    doc = parser.parse(request.data)
    redis.set(doc['key'], doc.mini)

With this, doc could contain thousands of objects, but the only one loaded into a python object was key, and we even minified the content as we went.

Re-use the parser.

One of the easiest performance gains if you're working on many documents is to re-use the parser.

import simdjson
parser = simdjson.Parser()

for i in range(0, 100):
    doc = parser.parse(b'{"a": "b"}')

This will drastically reduce the number of allocations being made, as it will reuse the existing buffer when possible. If it's too small, it'll grow to fit.

📈 Benchmarks

pysimdjson compares well against most libraries for the default load/loads(), which creates full python objects immediately.

pysimdjson performs significantly better when only part of the document is of interest. For each test file we show the time taken to completely deserialize the document into Python objects, as well as the time to get the deepest key in each file. The second approach avoids all unnecessary object creation.

jsonexamples/canada.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 10.61630 27.12380 0.00442 58.42790
orjson-{canada} 11.97230 29.95960 0.00469 56.21902
ujson-{canada} 19.12120 60.73670 0.01320 26.66618
simplejson-{canada} 39.64180 59.80270 0.00535 20.51313
rapidjson-{canada} 40.57460 78.20690 0.01444 17.10311
json-{canada} 42.95370 62.18130 0.00470 20.21549

jsonexamples/canada.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 3.38440 7.60380 0.00071 255.69203
ujson-{canada} 11.10420 34.35320 0.00742 49.72907
orjson-{canada} 12.92510 45.33800 0.00745 41.44936
simplejson-{canada} 38.92410 64.06250 0.00856 19.70330
rapidjson-{canada} 41.22570 66.68340 0.00756 19.22791
json-{canada} 43.08250 64.75990 0.00661 18.15876

jsonexamples/twitter.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{twitter} 2.29380 8.67020 0.00094 372.10773
✨ simdjson-{twitter} 2.49010 22.30540 0.00198 281.95565
ujson-{twitter} 2.74350 12.06470 0.00105 317.20009
simplejson-{twitter} 3.35320 19.56840 0.00202 217.32882
rapidjson-{twitter} 4.32850 13.21370 0.00119 194.83892
json-{twitter} 5.27190 11.25140 0.00117 167.84380

jsonexamples/twitter.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{twitter} 0.35740 2.01060 0.00009 2423.86485
orjson-{twitter} 2.29750 11.01000 0.00105 366.48762
ujson-{twitter} 2.76260 14.13210 0.00143 285.69895
simplejson-{twitter} 3.35340 13.34750 0.00118 257.05624
rapidjson-{twitter} 4.31330 12.43220 0.00141 192.75979
json-{twitter} 5.23560 13.85480 0.00126 168.04882

jsonexamples/github_events.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{github_events} 0.17850 0.62230 0.00002 5331.74983
✨ simdjson-{github_events} 0.19760 2.36700 0.00009 3905.95971
ujson-{github_events} 0.25860 0.67530 0.00003 3642.89767
json-{github_events} 0.28910 1.09600 0.00009 2924.08415
simplejson-{github_events} 0.30620 1.29520 0.00005 3007.32539
rapidjson-{github_events} 0.33290 1.15310 0.00006 2654.55940

jsonexamples/github_events.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{github_events} 0.03950 3.31210 0.00005 15973.82108
orjson-{github_events} 0.18030 0.65220 0.00005 4911.43253
ujson-{github_events} 0.26070 0.96760 0.00005 3549.92113
json-{github_events} 0.29040 1.54090 0.00007 3047.37921
simplejson-{github_events} 0.30920 0.98670 0.00008 2953.84031
rapidjson-{github_events} 0.33390 1.56730 0.00010 2461.45389

jsonexamples/citm_catalog.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{citm_catalog} 5.24950 18.22640 0.00323 129.49044
✨ simdjson-{citm_catalog} 6.05650 29.15550 0.00584 70.17580
ujson-{citm_catalog} 6.24130 18.69410 0.00373 109.60956
json-{citm_catalog} 9.10930 26.54630 0.00414 76.55235
simplejson-{citm_catalog} 13.69630 28.63450 0.00401 57.28718
rapidjson-{citm_catalog} 21.78300 65.30240 0.01055 28.63350

jsonexamples/citm_catalog.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{citm_catalog} 0.87070 2.86480 0.00019 1056.22226
orjson-{citm_catalog} 5.40520 26.24650 0.00551 102.43563
ujson-{citm_catalog} 6.38280 26.49210 0.00562 96.65066
json-{citm_catalog} 9.16770 29.45910 0.00498 76.90314
simplejson-{citm_catalog} 13.66750 30.54480 0.00471 57.54416
rapidjson-{citm_catalog} 19.16620 49.23040 0.00714 36.04769

jsonexamples/mesh.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 2.60850 17.85500 0.00189 276.39681
ujson-{mesh} 2.80000 11.36520 0.00148 297.40696
orjson-{mesh} 2.87780 14.34770 0.00156 272.06333
json-{mesh} 5.69520 22.03140 0.00282 132.44125
rapidjson-{mesh} 7.28240 24.61470 0.00249 113.59051
simplejson-{mesh} 8.37720 18.80480 0.00201 104.81092

jsonexamples/mesh.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 1.01600 12.12980 0.00067 619.16472
ujson-{mesh} 2.75500 14.19920 0.00166 309.06497
orjson-{mesh} 2.84420 24.41680 0.00248 245.50994
json-{mesh} 5.63860 14.53620 0.00160 154.31889
rapidjson-{mesh} 7.11940 18.68600 0.00208 117.20282
simplejson-{mesh} 8.27930 19.76000 0.00207 106.66946

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysimdjson-2.5.0.tar.gz (206.6 kB view details)

Uploaded Source

Built Distributions

pysimdjson-2.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (149.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pysimdjson-2.5.0-cp38-cp38-win_amd64.whl (135.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pysimdjson-2.5.0-cp38-cp38-macosx_10_14_x86_64.whl (166.6 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pysimdjson-2.5.0-cp37-cp37m-win_amd64.whl (135.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

pysimdjson-2.5.0-cp37-cp37m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

pysimdjson-2.5.0-cp37-cp37m-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

pysimdjson-2.5.0-cp36-cp36m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

pysimdjson-2.5.0-cp36-cp36m-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

pysimdjson-2.5.0-cp35-cp35m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

pysimdjson-2.5.0-cp35-cp35m-macosx_10_14_x86_64.whl (163.9 kB view details)

Uploaded CPython 3.5m macOS 10.14+ x86-64

File details

Details for the file pysimdjson-2.5.0.tar.gz.

File metadata

  • Download URL: pysimdjson-2.5.0.tar.gz
  • Upload date:
  • Size: 206.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0.tar.gz
Algorithm Hash digest
SHA256 4f3c46b2ced0e276c0a9be8397618e1601f267fb46c3dcba48806dd091ca624d
MD5 3636ef9fa34c0d5ccc82c86f996a9a66
BLAKE2b-256 9bf6c63260f8788574de8fdd0bbe70f803328cb058141c0903ba29637d89f863

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 149.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 PyPy/7.3.1

File hashes

Hashes for pysimdjson-2.5.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2b4506d8339ec09c9ce1cc1de7cff29e58a9e26399fabc1c7af2e43f06ea434
MD5 235ccf1c725b47b897ff93226c1b565c
BLAKE2b-256 09dc0975a83820704c481515c80b9351cfa3739acc171e3341d239112d6b1d3b

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 135.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c0d551f86d38734f3e27611aafb35d25de3030b43378b16b173bc985a6ede02f
MD5 c39c9336c4677b8513d737015c206c65
BLAKE2b-256 922f51c035e9bc08f55490128ccfcb0bb0c979596ffafc10ea704eb7eb79cc46

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76c4e06dcecdfc9a7bc3a44a9f154b720d5fe20883ae44c479fd843ab2ec19be
MD5 b5095517ddc093019f6d4124c7529515
BLAKE2b-256 21f564101e0299899e9f0cd726acf423e25c224796c29e967b3e6fed89ea4900

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 103af424167b00b368518f2475a5eb76e2d2fb594bb62014434136874dc7e920
MD5 3ac4caf605bab7a9118f8bbef8909cc0
BLAKE2b-256 8216c12a14f3bfc336685e9a19565293950a504776888ea0be1d880e8cfdf703

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 166.6 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4b5a3c4a1befe308ccd0615185cb0f523991d165e20f08a548e446b543475af7
MD5 28767a720784830a8e32085f95a5b6a9
BLAKE2b-256 7ff38a715a03505a3929358895592f6a35bdfd9394885ed563387bf335d06179

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 135.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pysimdjson-2.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 703a24f0210db6c89732d58e12511c515975168e0a7093ad076c68ef99eca24e
MD5 d2a326d1445bed6519a03497fda9d122
BLAKE2b-256 920102472ecf0c4ae0f68b63a00db58d36bb81ba4b66b3a1f609ce5ccd792932

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b83c6401929d0bfc79253cad971d6cf8416031a8362027082c707725b7c3d21a
MD5 d63203a6da5326b1d113d2235045bf92
BLAKE2b-256 b4edf7947c52e2a4b16e2e661d2664c097613ec76bf1dcc1c9ae1befc3204c8e

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db2f8206e6cc86de740e8e830c81ce1d126313a7b7523447a2b75fd47418d87a
MD5 3e4a715e643621dbc9431090e039fe88
BLAKE2b-256 8b7a2bcd929027f0e83cf2d028d20475069c66754e12f9934b4851c6ea7ae04e

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 163.9 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pysimdjson-2.5.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 27cee9dfe7ef42ce1283634550dd55d450c2f85041adcae818acdfe7ba58495d
MD5 828154cbcfdff98dfff92980e36e5b53
BLAKE2b-256 2ddb7cce1665aa97cb76b8e6b51abef5a7a9f6f2cf68c5e0a1c8c87e1d2ad469

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26364ec30b9b89862248f4e224eb8df62f6e3f47be4afad25569f14061a583cf
MD5 7d147a282a4e704ed46715daaedd704c
BLAKE2b-256 e537a6db8e859a9dd7ed942496a9d9551a3aa6a809eaee136012f1bc927bd483

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07662d3de3149d33bf799cb4276e5efaa8c4bd938c546382e7d38cd2f34f1b61
MD5 0c15ae3adb6cada4d4753a1377303c64
BLAKE2b-256 ef91ed43c82d35e4d500382ab2b2065284ed1926183523ae6c827fdd96105e60

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 163.9 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for pysimdjson-2.5.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c6c3566c0a137eb1e2cc068b83ca0ea17af653ec86da33d6a7eb7d1c8ac2e868
MD5 180c51b712cc852c7143fe3be7711bcc
BLAKE2b-256 53d6edff28a7dc8865676c538d4ff5df6689e31f5dc53c7206622d9462c41738

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp35-cp35m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp35-cp35m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.0-cp35-cp35m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad779e5d308e837e9c092fbe919fe46da0c1d17af67c09a8aa513fff806e91ce
MD5 c9537582752df81a3353017c6efb2729
BLAKE2b-256 cd1685c41daeb187b53daae4b60ef1e69cb8b3e6d81b86fa7a1cbb2c2ab9a517

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.0-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 690d5a6bb04a9c24355aaed1ce1288236c3ea509807c714de423df4bae90fffe
MD5 b99e47c6fd0dc94755f1f130db0d319e
BLAKE2b-256 8ffd4ebe746f96ce2a1ccf470e0b04bfdd217b3a950fb258bbf140f723126304

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.0-cp35-cp35m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.0-cp35-cp35m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 163.9 kB
  • Tags: CPython 3.5m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.5.9

File hashes

Hashes for pysimdjson-2.5.0-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1eace77c32ed33903bb554315edfdc06845b617c4cfb587ac5ef573a4b512185
MD5 cbb471286fd323b33d94358bf7a6d309
BLAKE2b-256 c7ddf44e7ac34fc968d70be427e791c49ca5cdcb2ad347e9c15aec25cde8e012

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page