Skip to main content

simdjson bindings for python

Project description

PyPI - License Tests

pysimdjson

Python bindings for the simdjson project, a SIMD-accelerated JSON parser. If SIMD instructions are unavailable a fallback parser is used, making pysimdjson safe to use anywhere.

Bindings are currently tested on OS X, Linux, and Windows for Python version 3.5 to 3.9.

🎉 Installation

If binary wheels are available for your platform, you can install from pip with no further requirements:

pip install pysimdjson

Binary wheels are available for the following:

py3.5 py3.6 py3.7 py3.8 pypy3
OS X (x86_64) y y y y y
Windows (x86_64) x x y y x
Linux (x86_64) y y y y x
Linux (ARM64) y y y y x

If binary wheels are not available for your platform, you'll need a C++11-capable compiler to compile the sources:

pip install 'pysimdjson[dev]' --no-binary :all:

Both simddjson and pysimdjson support FreeBSD and Linux on ARM when built from source.

⚗ Development and Testing

This project comes with a full test suite. To install development and testing dependencies, use:

pip install -e ".[dev]"

To also install 3rd party JSON libraries used for running benchmarks, use:

pip install -e ".[benchmark]"

To run the tests, just type pytest. To also run the benchmarks, use pytest --runslow.

To properly test on Windows, you need both a recent version of Visual Studio (VS) as well as VS2015, patch 3. Older versions of CPython required portable C/C++ extensions to be built with the same version of VS as the interpreter. Use the Developer Command Prompt to easily switch between versions.

How It Works

This project uses pybind11 to generate the low-level bindings on top of the simdjson project. You can use it just like the built-in json module, or use the simdjson-specific API for much better performance.

import simdjson
doc = simdjson.loads('{"hello": "world"}')

🚀 Making things faster

pysimdjson provides an api compatible with the built-in json module for convenience, and this API is pretty fast (beating or tying all other Python JSON libraries). However, it also provides a simdjson-specific API that can perform significantly better.

Don't load the entire document

95% of the time spent loading a JSON document into Python is spent in the creation of Python objects, not the actual parsing of the document. You can avoid all of this overhead by ignoring parts of the document you don't want.

pysimdjson supports this in two ways - the use of JSON pointers via at(), or proxies for objects and lists.

import simdjson
parser = simdjson.Parser()
doc = parser.parse(b'{"res": [{"name": "first"}, {"name": "second"}]}')

For our sample above, we really just want the second entry in res, we don't care about anything else. We can do this two ways:

assert doc['res'][1]['name'] == 'second' # True
assert doc.at('res/1/name') == 'second' # True

Both of these approaches will be much faster than using load/s(), since they avoid loading the parts of the document we didn't care about.

Both Object and Array have a mini property that returns their entire content as a minified Python str. A message router for example would only parse the document and retrieve a single property, the destination, and forward the payload without ever turning it into a Python object. Here's a (bad) example:

import simdjson

@app.route('/store', methods=['POST'])
def store():
    parser = simdjson.Parser()
    doc = parser.parse(request.data)
    redis.set(doc['key'], doc.mini)

With this, doc could contain thousands of objects, but the only one loaded into a python object was key, and we even minified the content as we went.

Re-use the parser.

One of the easiest performance gains if you're working on many documents is to re-use the parser.

import simdjson
parser = simdjson.Parser()

for i in range(0, 100):
    doc = parser.parse(b'{"a": "b"}')

This will drastically reduce the number of allocations being made, as it will reuse the existing buffer when possible. If it's too small, it'll grow to fit.

📈 Benchmarks

pysimdjson compares well against most libraries for the default load/loads(), which creates full python objects immediately.

pysimdjson performs significantly better when only part of the document is of interest. For each test file we show the time taken to completely deserialize the document into Python objects, as well as the time to get the deepest key in each file. The second approach avoids all unnecessary object creation.

jsonexamples/canada.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 10.61630 27.12380 0.00442 58.42790
orjson-{canada} 11.97230 29.95960 0.00469 56.21902
ujson-{canada} 19.12120 60.73670 0.01320 26.66618
simplejson-{canada} 39.64180 59.80270 0.00535 20.51313
rapidjson-{canada} 40.57460 78.20690 0.01444 17.10311
json-{canada} 42.95370 62.18130 0.00470 20.21549

jsonexamples/canada.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 3.38440 7.60380 0.00071 255.69203
ujson-{canada} 11.10420 34.35320 0.00742 49.72907
orjson-{canada} 12.92510 45.33800 0.00745 41.44936
simplejson-{canada} 38.92410 64.06250 0.00856 19.70330
rapidjson-{canada} 41.22570 66.68340 0.00756 19.22791
json-{canada} 43.08250 64.75990 0.00661 18.15876

jsonexamples/twitter.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{twitter} 2.29380 8.67020 0.00094 372.10773
✨ simdjson-{twitter} 2.49010 22.30540 0.00198 281.95565
ujson-{twitter} 2.74350 12.06470 0.00105 317.20009
simplejson-{twitter} 3.35320 19.56840 0.00202 217.32882
rapidjson-{twitter} 4.32850 13.21370 0.00119 194.83892
json-{twitter} 5.27190 11.25140 0.00117 167.84380

jsonexamples/twitter.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{twitter} 0.35740 2.01060 0.00009 2423.86485
orjson-{twitter} 2.29750 11.01000 0.00105 366.48762
ujson-{twitter} 2.76260 14.13210 0.00143 285.69895
simplejson-{twitter} 3.35340 13.34750 0.00118 257.05624
rapidjson-{twitter} 4.31330 12.43220 0.00141 192.75979
json-{twitter} 5.23560 13.85480 0.00126 168.04882

jsonexamples/github_events.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{github_events} 0.17850 0.62230 0.00002 5331.74983
✨ simdjson-{github_events} 0.19760 2.36700 0.00009 3905.95971
ujson-{github_events} 0.25860 0.67530 0.00003 3642.89767
json-{github_events} 0.28910 1.09600 0.00009 2924.08415
simplejson-{github_events} 0.30620 1.29520 0.00005 3007.32539
rapidjson-{github_events} 0.33290 1.15310 0.00006 2654.55940

jsonexamples/github_events.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{github_events} 0.03950 3.31210 0.00005 15973.82108
orjson-{github_events} 0.18030 0.65220 0.00005 4911.43253
ujson-{github_events} 0.26070 0.96760 0.00005 3549.92113
json-{github_events} 0.29040 1.54090 0.00007 3047.37921
simplejson-{github_events} 0.30920 0.98670 0.00008 2953.84031
rapidjson-{github_events} 0.33390 1.56730 0.00010 2461.45389

jsonexamples/citm_catalog.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{citm_catalog} 5.24950 18.22640 0.00323 129.49044
✨ simdjson-{citm_catalog} 6.05650 29.15550 0.00584 70.17580
ujson-{citm_catalog} 6.24130 18.69410 0.00373 109.60956
json-{citm_catalog} 9.10930 26.54630 0.00414 76.55235
simplejson-{citm_catalog} 13.69630 28.63450 0.00401 57.28718
rapidjson-{citm_catalog} 21.78300 65.30240 0.01055 28.63350

jsonexamples/citm_catalog.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{citm_catalog} 0.87070 2.86480 0.00019 1056.22226
orjson-{citm_catalog} 5.40520 26.24650 0.00551 102.43563
ujson-{citm_catalog} 6.38280 26.49210 0.00562 96.65066
json-{citm_catalog} 9.16770 29.45910 0.00498 76.90314
simplejson-{citm_catalog} 13.66750 30.54480 0.00471 57.54416
rapidjson-{citm_catalog} 19.16620 49.23040 0.00714 36.04769

jsonexamples/mesh.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 2.60850 17.85500 0.00189 276.39681
ujson-{mesh} 2.80000 11.36520 0.00148 297.40696
orjson-{mesh} 2.87780 14.34770 0.00156 272.06333
json-{mesh} 5.69520 22.03140 0.00282 132.44125
rapidjson-{mesh} 7.28240 24.61470 0.00249 113.59051
simplejson-{mesh} 8.37720 18.80480 0.00201 104.81092

jsonexamples/mesh.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 1.01600 12.12980 0.00067 619.16472
ujson-{mesh} 2.75500 14.19920 0.00166 309.06497
orjson-{mesh} 2.84420 24.41680 0.00248 245.50994
json-{mesh} 5.63860 14.53620 0.00160 154.31889
rapidjson-{mesh} 7.11940 18.68600 0.00208 117.20282
simplejson-{mesh} 8.27930 19.76000 0.00207 106.66946

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysimdjson-2.5.1.tar.gz (206.9 kB view details)

Uploaded Source

Built Distributions

pysimdjson-2.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (149.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pysimdjson-2.5.1-cp38-cp38-win_amd64.whl (135.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

pysimdjson-2.5.1-cp38-cp38-macosx_10_14_x86_64.whl (166.7 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pysimdjson-2.5.1-cp37-cp37m-win_amd64.whl (135.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

pysimdjson-2.5.1-cp37-cp37m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

pysimdjson-2.5.1-cp37-cp37m-macosx_10_14_x86_64.whl (164.0 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

pysimdjson-2.5.1-cp36-cp36m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

pysimdjson-2.5.1-cp36-cp36m-macosx_10_14_x86_64.whl (164.0 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

pysimdjson-2.5.1-cp35-cp35m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

pysimdjson-2.5.1-cp35-cp35m-macosx_10_14_x86_64.whl (164.0 kB view details)

Uploaded CPython 3.5m macOS 10.14+ x86-64

File details

Details for the file pysimdjson-2.5.1.tar.gz.

File metadata

  • Download URL: pysimdjson-2.5.1.tar.gz
  • Upload date:
  • Size: 206.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1.tar.gz
Algorithm Hash digest
SHA256 0ccfb9a2f89fbadaa080057150215cf642e05d9f244628aa856904868b553b94
MD5 83b37e4620507490aa43c7a7ffeaee51
BLAKE2b-256 61e33b205a6f2a1c7fe4708888149b5e6632c9f0ca82fc5d0100946a581b1be3

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 149.5 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 PyPy/7.3.1

File hashes

Hashes for pysimdjson-2.5.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa1aaa9d722d0a33ba369a2f7936f9bb3efe954a5238b4359e45c8d877f37181
MD5 d8df4fc37aa84723ef1bd02606bd2f4b
BLAKE2b-256 c37661f0e8603cfb520b6cc11fcc4a034671579ea5707e084f51aa57cd917fb7

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 135.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f5faab579e939d3f278ef3686a3447350cd2837fcf03f94628600352eb4a6828
MD5 52f79dc35017512a0a362d5bef485be8
BLAKE2b-256 626324c18ba92d592d52a651e12469be012039b5a996629ec40c3aa71fce9342

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65154471f8bd92f97feaa95a3e1c4899530774ab69e51e097082526982cd7024
MD5 496380290f63acadea0d080c31636d80
BLAKE2b-256 96ce4d94f016f9c10c4b352ef0ac4c9f3279b81886a7e45d31a59ca72a206e59

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0867c9660cb0db92b398f4a48cf15110d44ac0456debb2ae109d561084558ea6
MD5 abbfd585dd589ce1b32f914f8441e5a8
BLAKE2b-256 59072ce425979b72aba88220ab7cb45a8a759e738ca9fa00bd4c3c467ec883ee

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 166.7 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8385c2b775ea3de9a548942b5ae5ccbd512725c87965d068bdff3235ec59b313
MD5 0d10109525487c4b8c7f92107ec74c26
BLAKE2b-256 49a0349bdc84c3fc2e4509469e224a27af274e915ec23e49068421e63674c947

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 135.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pysimdjson-2.5.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 72ec63a40d967f9f2a2568f143227648e49ec93ee2fca0d8fe3dda9b5c67d215
MD5 76082f437b7a5e667c29b244fed2f635
BLAKE2b-256 677a964045d1659f4a571f6c2f92f79477d20a7d4d454924d28dd567dd58fbaf

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a6917a748076cddfd19c5cabdecfb143f41eea99a6ea20418934b4449b659e5
MD5 bed41f91c1b86a5da4e740bdeff71862
BLAKE2b-256 78c4f0212ac3543faafd842b942ea8bc9d5208e3492a518b4fc47330c415f42b

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d85ab77b7bc62df7bd1b39231c7a955f07216a72744c8ab7c36202ee32feceb
MD5 9e907ab64fc8d9988a9c81d03d124b97
BLAKE2b-256 063908a7be417a68fa97040727a16c9bfcc0744c08f0137bf742fd5fc7681902

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 164.0 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pysimdjson-2.5.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 11de98885fa8b62c3fd31e9d05f14bc13896f844377ab1a31780aff475565cd6
MD5 ffe6ce3b9d542031a043ecdcf318ba09
BLAKE2b-256 4eeddb982bf976834cb1345c2534e2d44f6cfe50306e86b1b1af645a4ae2ee2c

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 695538184af677de76c7820e35b2e9f84bf0ea719b926697cb6c60968e7e82fa
MD5 d567ee208d7ab55465e3cd1026f176a2
BLAKE2b-256 9e936d7fab5f3877426a8732aaae8fa608b5c9eb279651d3ca23225364b7711a

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.1-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f35a6e42ac234eb054bcbd3c67b02ecee809868a6e301c475241e6f71e48b4c
MD5 ee4eeae3e6e2f9ebe709cacabcd44637
BLAKE2b-256 2c0fc0b9ef8f9b26f427bac26a7165bff278bed32e5e23153ed7f97addd8e03a

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 164.0 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for pysimdjson-2.5.1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8fdd58ddaef6c9e881d49028d120b3cec0d537e0efce837c82f56cbea619acbe
MD5 09f950a505e4493f495b7175cd13e647
BLAKE2b-256 ae9782efa69891e67ab7cd9bd372479bbbf14c86e25e4f73ecec746dbb383e4c

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp35-cp35m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp35-cp35m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-2.5.1-cp35-cp35m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17c3773cfe21f78b0b5b282e99281aecd5dd074662039c4d9eb489c9b480167f
MD5 2a7b07c018d511d8a74e5a755694af3f
BLAKE2b-256 cfe441a8d67d6be27d57fdb3b6d2e27a1f56c220698514811425d6ef078dd413

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-2.5.1-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0a6d4acacf4530ef2c65c8ef5366a350d56cdb218d7b5287ad8598cb6d0c6eb
MD5 6611514bc5a1532ace901cd385fb14cd
BLAKE2b-256 28b7cee86ab192b9781311fd640c11ce17bfe214f9218829fee623ad8c9fbbdc

See more details on using hashes here.

File details

Details for the file pysimdjson-2.5.1-cp35-cp35m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-2.5.1-cp35-cp35m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 164.0 kB
  • Tags: CPython 3.5m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.5.9

File hashes

Hashes for pysimdjson-2.5.1-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e860577eddb2601afcbcbf8a8b68eecd7e0029af4e9c2913484e5869bbb30cbe
MD5 f56d2763673c5f26ebf8afc61c7b007f
BLAKE2b-256 f83eb2b85e9dedaa65f9f7148ede84ecd85ac4f4cd6f103cade6021a1c7ffbfc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page