Skip to main content

simdjson bindings for python

Project description

PyPI - License Tests

pysimdjson

Python bindings for the simdjson project, a SIMD-accelerated JSON parser. If SIMD instructions are unavailable a fallback parser is used, making pysimdjson safe to use anywhere.

Bindings are currently tested on OS X, Linux, and Windows for Python version 3.5 to 3.9.

🎉 Installation

If binary wheels are available for your platform, you can install from pip with no further requirements:

pip install pysimdjson

Binary wheels are available for the following:

py3.5 py3.6 py3.7 py3.8 pypy3
OS X (x86_64) y y y y y
Windows (x86_64) x x y y x
Linux (x86_64) y y y y x
Linux (ARM64) y y y y x

If binary wheels are not available for your platform, you'll need a C++11-capable compiler to compile the sources:

pip install 'pysimdjson[dev]' --no-binary :all:

Both simddjson and pysimdjson support FreeBSD and Linux on ARM when built from source.

⚗ Development and Testing

This project comes with a full test suite. To install development and testing dependencies, use:

pip install -e ".[dev]"

To also install 3rd party JSON libraries used for running benchmarks, use:

pip install -e ".[benchmark]"

To run the tests, just type pytest. To also run the benchmarks, use pytest --runslow.

To properly test on Windows, you need both a recent version of Visual Studio (VS) as well as VS2015, patch 3. Older versions of CPython required portable C/C++ extensions to be built with the same version of VS as the interpreter. Use the Developer Command Prompt to easily switch between versions.

How It Works

This project uses pybind11 to generate the low-level bindings on top of the simdjson project. You can use it just like the built-in json module, or use the simdjson-specific API for much better performance.

import simdjson
doc = simdjson.loads('{"hello": "world"}')

🚀 Making things faster

pysimdjson provides an api compatible with the built-in json module for convenience, and this API is pretty fast (beating or tying all other Python JSON libraries). However, it also provides a simdjson-specific API that can perform significantly better.

Don't load the entire document

95% of the time spent loading a JSON document into Python is spent in the creation of Python objects, not the actual parsing of the document. You can avoid all of this overhead by ignoring parts of the document you don't want.

pysimdjson supports this in two ways - the use of JSON pointers via at(), or proxies for objects and lists.

import simdjson
parser = simdjson.Parser()
doc = parser.parse(b'{"res": [{"name": "first"}, {"name": "second"}]}')

For our sample above, we really just want the second entry in res, we don't care about anything else. We can do this two ways:

assert doc['res'][1]['name'] == 'second' # True
assert doc.at('res/1/name') == 'second' # True

Both of these approaches will be much faster than using load/s(), since they avoid loading the parts of the document we didn't care about.

Both Object and Array have a mini property that returns their entire content as a minified Python str. A message router for example would only parse the document and retrieve a single property, the destination, and forward the payload without ever turning it into a Python object. Here's a (bad) example:

import simdjson

@app.route('/store', methods=['POST'])
def store():
    parser = simdjson.Parser()
    doc = parser.parse(request.data)
    redis.set(doc['key'], doc.mini)

With this, doc could contain thousands of objects, but the only one loaded into a python object was key, and we even minified the content as we went.

Re-use the parser.

One of the easiest performance gains if you're working on many documents is to re-use the parser.

import simdjson
parser = simdjson.Parser()

for i in range(0, 100):
    doc = parser.parse(b'{"a": "b"}')

This will drastically reduce the number of allocations being made, as it will reuse the existing buffer when possible. If it's too small, it'll grow to fit.

📈 Benchmarks

pysimdjson compares well against most libraries for the default load/loads(), which creates full python objects immediately.

pysimdjson performs significantly better when only part of the document is of interest. For each test file we show the time taken to completely deserialize the document into Python objects, as well as the time to get the deepest key in each file. The second approach avoids all unnecessary object creation.

jsonexamples/canada.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 10.61630 27.12380 0.00442 58.42790
orjson-{canada} 11.97230 29.95960 0.00469 56.21902
ujson-{canada} 19.12120 60.73670 0.01320 26.66618
simplejson-{canada} 39.64180 59.80270 0.00535 20.51313
rapidjson-{canada} 40.57460 78.20690 0.01444 17.10311
json-{canada} 42.95370 62.18130 0.00470 20.21549

jsonexamples/canada.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 3.38440 7.60380 0.00071 255.69203
ujson-{canada} 11.10420 34.35320 0.00742 49.72907
orjson-{canada} 12.92510 45.33800 0.00745 41.44936
simplejson-{canada} 38.92410 64.06250 0.00856 19.70330
rapidjson-{canada} 41.22570 66.68340 0.00756 19.22791
json-{canada} 43.08250 64.75990 0.00661 18.15876

jsonexamples/twitter.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{twitter} 2.29380 8.67020 0.00094 372.10773
✨ simdjson-{twitter} 2.49010 22.30540 0.00198 281.95565
ujson-{twitter} 2.74350 12.06470 0.00105 317.20009
simplejson-{twitter} 3.35320 19.56840 0.00202 217.32882
rapidjson-{twitter} 4.32850 13.21370 0.00119 194.83892
json-{twitter} 5.27190 11.25140 0.00117 167.84380

jsonexamples/twitter.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{twitter} 0.35740 2.01060 0.00009 2423.86485
orjson-{twitter} 2.29750 11.01000 0.00105 366.48762
ujson-{twitter} 2.76260 14.13210 0.00143 285.69895
simplejson-{twitter} 3.35340 13.34750 0.00118 257.05624
rapidjson-{twitter} 4.31330 12.43220 0.00141 192.75979
json-{twitter} 5.23560 13.85480 0.00126 168.04882

jsonexamples/github_events.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{github_events} 0.17850 0.62230 0.00002 5331.74983
✨ simdjson-{github_events} 0.19760 2.36700 0.00009 3905.95971
ujson-{github_events} 0.25860 0.67530 0.00003 3642.89767
json-{github_events} 0.28910 1.09600 0.00009 2924.08415
simplejson-{github_events} 0.30620 1.29520 0.00005 3007.32539
rapidjson-{github_events} 0.33290 1.15310 0.00006 2654.55940

jsonexamples/github_events.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{github_events} 0.03950 3.31210 0.00005 15973.82108
orjson-{github_events} 0.18030 0.65220 0.00005 4911.43253
ujson-{github_events} 0.26070 0.96760 0.00005 3549.92113
json-{github_events} 0.29040 1.54090 0.00007 3047.37921
simplejson-{github_events} 0.30920 0.98670 0.00008 2953.84031
rapidjson-{github_events} 0.33390 1.56730 0.00010 2461.45389

jsonexamples/citm_catalog.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{citm_catalog} 5.24950 18.22640 0.00323 129.49044
✨ simdjson-{citm_catalog} 6.05650 29.15550 0.00584 70.17580
ujson-{citm_catalog} 6.24130 18.69410 0.00373 109.60956
json-{citm_catalog} 9.10930 26.54630 0.00414 76.55235
simplejson-{citm_catalog} 13.69630 28.63450 0.00401 57.28718
rapidjson-{citm_catalog} 21.78300 65.30240 0.01055 28.63350

jsonexamples/citm_catalog.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{citm_catalog} 0.87070 2.86480 0.00019 1056.22226
orjson-{citm_catalog} 5.40520 26.24650 0.00551 102.43563
ujson-{citm_catalog} 6.38280 26.49210 0.00562 96.65066
json-{citm_catalog} 9.16770 29.45910 0.00498 76.90314
simplejson-{citm_catalog} 13.66750 30.54480 0.00471 57.54416
rapidjson-{citm_catalog} 19.16620 49.23040 0.00714 36.04769

jsonexamples/mesh.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 2.60850 17.85500 0.00189 276.39681
ujson-{mesh} 2.80000 11.36520 0.00148 297.40696
orjson-{mesh} 2.87780 14.34770 0.00156 272.06333
json-{mesh} 5.69520 22.03140 0.00282 132.44125
rapidjson-{mesh} 7.28240 24.61470 0.00249 113.59051
simplejson-{mesh} 8.37720 18.80480 0.00201 104.81092

jsonexamples/mesh.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 1.01600 12.12980 0.00067 619.16472
ujson-{mesh} 2.75500 14.19920 0.00166 309.06497
orjson-{mesh} 2.84420 24.41680 0.00248 245.50994
json-{mesh} 5.63860 14.53620 0.00160 154.31889
rapidjson-{mesh} 7.11940 18.68600 0.00208 117.20282
simplejson-{mesh} 8.27930 19.76000 0.00207 106.66946

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysimdjson-3.0.0.tar.gz (217.6 kB view details)

Uploaded Source

Built Distributions

pysimdjson-3.0.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (152.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pysimdjson-3.0.0-cp38-cp38-win_amd64.whl (136.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

pysimdjson-3.0.0-cp38-cp38-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8

pysimdjson-3.0.0-cp38-cp38-manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.8

pysimdjson-3.0.0-cp38-cp38-macosx_10_14_x86_64.whl (174.2 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pysimdjson-3.0.0-cp37-cp37m-win_amd64.whl (136.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

pysimdjson-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m

pysimdjson-3.0.0-cp37-cp37m-manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.7m

pysimdjson-3.0.0-cp37-cp37m-macosx_10_14_x86_64.whl (171.6 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

pysimdjson-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m

pysimdjson-3.0.0-cp36-cp36m-manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.6m

pysimdjson-3.0.0-cp36-cp36m-macosx_10_14_x86_64.whl (171.6 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

pysimdjson-3.0.0-cp35-cp35m-manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.5m

pysimdjson-3.0.0-cp35-cp35m-manylinux2014_aarch64.whl (1.8 MB view details)

Uploaded CPython 3.5m

pysimdjson-3.0.0-cp35-cp35m-macosx_10_14_x86_64.whl (171.6 kB view details)

Uploaded CPython 3.5m macOS 10.14+ x86-64

File details

Details for the file pysimdjson-3.0.0.tar.gz.

File metadata

  • Download URL: pysimdjson-3.0.0.tar.gz
  • Upload date:
  • Size: 217.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0.tar.gz
Algorithm Hash digest
SHA256 820a3be337132822927e60aae7a0fba67cfb0ad02a27100765fbf85090133de0
MD5 54dbc329628f8063f47fb82b3cde89e5
BLAKE2b-256 eb48cc0c7c156d239533d86bd598cab5658c5e78df2b59f5d378cb76dd68d3a5

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 152.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 PyPy/7.3.1

File hashes

Hashes for pysimdjson-3.0.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b042f7aae1271a2ca88a7759dd1ee4bda019347246e5f2a98874204ffef095e
MD5 30a756c1fbb249cf01c1ba9b0c058a27
BLAKE2b-256 3a2d7954b86949678ee63616783e3b87a177adfd2c60c83c70e4ae312582b754

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 136.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b1d1ed198efd97fb0263eb8deaa8ba6d4d06376db5837b28fa63e44594b7cac7
MD5 762990acee4541fd31a982b8caa36161
BLAKE2b-256 764e1845a890a400891288312bc75abb73f6f1e92d147ce5a680acd12265b40d

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84949a1bba78f8474729af53801b0dc1640cd4544c93b2f43a0ae7f5782376d0
MD5 e393981143f6fae8c12a3ab6c637bb32
BLAKE2b-256 2a070dee5db9df9b7f5a9935052d757cc74e8eceea29efb27db28f9a9e67e548

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.0.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cff477670ee24e80eccc22ed0a114bec0a56177252f14c8f4f4525faa78b3ee4
MD5 86ba0f895dac3dddcc7fff2ec8f7ab87
BLAKE2b-256 27ab9fb75ff5f0164eeb24727ce152fe5ba3ec2ac76349a5ed491c052a4b0fbf

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 174.2 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a0e987ddf024aacce44bbdcc72db01fba3cf1e71241b7d6840e903d088a8b809
MD5 7db46ea3e9f11392327f46b7f02dc4b1
BLAKE2b-256 9e08933ccde253d9d7bf8487fca09e9237ba142e2e9c6066c1593e0eaf052f6f

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 136.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pysimdjson-3.0.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 44eebd1ef4a2b1154c0f93ecd56c72b001824954a16731b884a71030c9ee6f50
MD5 cb812255b26b10af1dbc046598773260
BLAKE2b-256 875d319d8bd8e42c3f285f3ec2f62e0db6e399e5287e5e94da9ca7abf2f07053

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60ffd86fa6b06cce0fb1b2957dc6d3868486fcead978021fa4c0eab8e182f647
MD5 0b04f846dc89ce8b6b8222d6692e2321
BLAKE2b-256 4a7dca4c6023ef15c4eb3a9a1288236617564f0a9c89f8517fcdf820c0a8b4f1

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.0.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e4ebaf90fde56134ada9ec167f1c2623f849e9b03dad3c12b34872e1c6161ca
MD5 7a210600f8285b263ba4e064bad2bdf3
BLAKE2b-256 4b3e2873f6441c66a20259f535b40273ce6691ff4acdd961ef3c557b93be0343

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 171.6 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.8

File hashes

Hashes for pysimdjson-3.0.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 0f31583165d0f4b53654e0f9b3327759403430b3dea21e6d486f0dc828433125
MD5 76352bef2c09ee658d026996df8ace1b
BLAKE2b-256 fa2fac63725727259f13ae669b210799ac633f7748c4a81dff08b242ba2d6f62

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9991dff5dec3c7d9c9757c5e8ec9ca101d97ab1368cfd118ed5f384b3379b931
MD5 8042d192f939c22ccbf21dd2a4398474
BLAKE2b-256 0f0b4d8a12e8ef353485fab5a48ec5790d303efc0caf587a7b9b0e2bfa5696c3

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.0.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 81d1c46f521821afc32c33a9fc6d3147035e852c48463601be0bdd06c227a1a0
MD5 d0204f9e8a44911309a9fab064ed0a8f
BLAKE2b-256 f7c2295736e6a35536331372ed2f21d890430a4fee1a54e5861cd3f2c3c60288

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 171.6 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.11

File hashes

Hashes for pysimdjson-3.0.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 420120d9bc066dd4a5cab0e340d9ec66718c6ef1270a75f328d8d3a1fdedd728
MD5 eca1c44e382dc8bcf75a355b86b8c4ff
BLAKE2b-256 f3587d58f6bd30320a7ba702f96697fd8352064506bbc036d261535578ccbdbc

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp35-cp35m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp35-cp35m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pysimdjson-3.0.0-cp35-cp35m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20ac29e1f24b5931fca99a4037034a865ef4e69b5c414e1585b555dd77bdaa59
MD5 3183eca84a67909f72c3bae07bf0754d
BLAKE2b-256 b10f23d94b1884af6f0ec0d3ece9130e1c3a5ff48bf22d0eaece3f5fdbee1866

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.0.0-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d645d04b086aa5e63ac33f1d74b29841ebb99bbaa39c1df169c9752df22b6af
MD5 89bbf8487f47284ace51822a74143d4d
BLAKE2b-256 08e93b8690dafbfc91f33f555bc77728dac1e2892db09558d2ea149fbd805810

See more details on using hashes here.

File details

Details for the file pysimdjson-3.0.0-cp35-cp35m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.0.0-cp35-cp35m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 171.6 kB
  • Tags: CPython 3.5m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.5.9

File hashes

Hashes for pysimdjson-3.0.0-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 2170bbb88bd152886ac7bc90b3c001434c70bc587a402422fd007ad6fbafc549
MD5 0d3aee24692f8d106bb1efd7d43dcf5e
BLAKE2b-256 13df5bc58c5b91fde0d22728d539fbfb3048942fc18b7766342d9372b1558ff3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page