Skip to main content

simdjson bindings for python

Project description

PyPI - License Tests

pysimdjson

Python bindings for the simdjson project, a SIMD-accelerated JSON parser. If SIMD instructions are unavailable a fallback parser is used, making pysimdjson safe to use anywhere.

Bindings are currently tested on OS X, Linux, and Windows for Python version 3.5 to 3.9.

📝 Documentation

The latest documentation can be found at https://pysimdjson.tkte.ch.

If you've checked out the source code (for example to review a PR), you can build the latest documentation by running cd docs && make html.

🎉 Installation

If binary wheels are available for your platform, you can install from pip with no further requirements:

pip install pysimdjson

Binary wheels are available for the following:

py3.5 py3.6 py3.7 py3.8 pypy3
OS X (x86_64) y y y y y
Windows (x86_64) x x y y x
Linux (x86_64) y y y y x
Linux (ARM64) y y y y x

If binary wheels are not available for your platform, you'll need a C++11-capable compiler to compile the sources:

pip install 'pysimdjson[dev]' --no-binary :all:

Both simdjson and pysimdjson support FreeBSD and Linux on ARM when built from source.

⚗ Development and Testing

This project comes with a full test suite. To install development and testing dependencies, use:

pip install -e ".[dev]"

To also install 3rd party JSON libraries used for running benchmarks, use:

pip install -e ".[benchmark]"

To run the tests, just type pytest. To also run the benchmarks, use pytest --runslow.

To properly test on Windows, you need both a recent version of Visual Studio (VS) as well as VS2015, patch 3. Older versions of CPython required portable C/C++ extensions to be built with the same version of VS as the interpreter. Use the Developer Command Prompt to easily switch between versions.

How It Works

This project uses pybind11 to generate the low-level bindings on top of the simdjson project. You can use it just like the built-in json module, or use the simdjson-specific API for much better performance.

import simdjson
doc = simdjson.loads('{"hello": "world"}')

🚀 Making things faster

pysimdjson provides an api compatible with the built-in json module for convenience, and this API is pretty fast (beating or tying all other Python JSON libraries). However, it also provides a simdjson-specific API that can perform significantly better.

Don't load the entire document

95% of the time spent loading a JSON document into Python is spent in the creation of Python objects, not the actual parsing of the document. You can avoid all of this overhead by ignoring parts of the document you don't want.

pysimdjson supports this in two ways - the use of JSON pointers via at(), or proxies for objects and lists.

import simdjson
parser = simdjson.Parser()
doc = parser.parse(b'{"res": [{"name": "first"}, {"name": "second"}]}')

For our sample above, we really just want the second entry in res, we don't care about anything else. We can do this two ways:

assert doc['res'][1]['name'] == 'second' # True
assert doc.at('res/1/name') == 'second' # True

Both of these approaches will be much faster than using load/s(), since they avoid loading the parts of the document we didn't care about.

Both Object and Array have a mini property that returns their entire content as a minified Python str. A message router for example would only parse the document and retrieve a single property, the destination, and forward the payload without ever turning it into a Python object. Here's a (bad) example:

import simdjson

@app.route('/store', methods=['POST'])
def store():
    parser = simdjson.Parser()
    doc = parser.parse(request.data)
    redis.set(doc['key'], doc.mini)

With this, doc could contain thousands of objects, but the only one loaded into a python object was key, and we even minified the content as we went.

Re-use the parser.

One of the easiest performance gains if you're working on many documents is to re-use the parser.

import simdjson
parser = simdjson.Parser()

for i in range(0, 100):
    doc = parser.parse(b'{"a": "b"}')

This will drastically reduce the number of allocations being made, as it will reuse the existing buffer when possible. If it's too small, it'll grow to fit.

📈 Benchmarks

pysimdjson compares well against most libraries for the default load/loads(), which creates full python objects immediately.

pysimdjson performs significantly better when only part of the document is of interest. For each test file we show the time taken to completely deserialize the document into Python objects, as well as the time to get the deepest key in each file. The second approach avoids all unnecessary object creation.

jsonexamples/canada.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 10.67130 22.89260 0.00465 60.30257
yyjson-{canada} 11.29230 29.90640 0.00568 53.27890
orjson-{canada} 11.90260 34.88260 0.00507 54.49605
ujson-{canada} 18.17060 48.99410 0.00718 36.24892
simplejson-{canada} 39.24630 52.62860 0.00483 21.81617
rapidjson-{canada} 41.04930 53.10800 0.00445 21.19078
json-{canada} 44.68320 59.44410 0.00440 19.71509

jsonexamples/canada.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 3.21360 6.88010 0.00044 285.83978
yyjson-{canada} 10.62770 46.10050 0.01000 43.29310
orjson-{canada} 12.54010 39.16080 0.00779 44.28928
ujson-{canada} 17.93980 35.44960 0.00697 36.78481
simplejson-{canada} 38.58160 54.33290 0.00699 21.37382
rapidjson-{canada} 40.69030 58.23460 0.00700 20.30349
json-{canada} 43.88300 65.04480 0.00722 18.55929

jsonexamples/twitter.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{twitter} 2.36070 14.03050 0.00123 346.94307
✨ simdjson-{twitter} 2.41350 12.01550 0.00117 359.49272
yyjson-{twitter} 2.48130 12.03680 0.00112 353.03313
ujson-{twitter} 2.62890 11.39370 0.00090 346.87994
simplejson-{twitter} 3.34600 11.08840 0.00098 270.58797
json-{twitter} 3.35270 11.82610 0.00116 260.01943
rapidjson-{twitter} 4.29320 13.81980 0.00128 197.91107

jsonexamples/twitter.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{twitter} 0.33840 0.67200 0.00002 2800.32496
orjson-{twitter} 2.38460 13.53120 0.00131 352.70788
yyjson-{twitter} 2.48180 13.67470 0.00156 320.56731
ujson-{twitter} 2.65230 11.65150 0.00125 331.69430
json-{twitter} 3.34910 12.44890 0.00116 263.25854
simplejson-{twitter} 3.35760 15.61900 0.00137 262.36758
rapidjson-{twitter} 4.31870 12.77490 0.00119 201.86510

jsonexamples/github_events.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{github_events} 0.18080 0.67020 0.00004 5041.29485
✨ simdjson-{github_events} 0.19470 0.61450 0.00003 4725.63489
yyjson-{github_events} 0.19710 0.53970 0.00004 4584.50870
ujson-{github_events} 0.23760 1.33490 0.00004 3904.08715
json-{github_events} 0.29030 1.32040 0.00009 3034.22530
simplejson-{github_events} 0.30210 0.82260 0.00005 3067.99997
rapidjson-{github_events} 0.33010 0.92400 0.00005 2793.93274

jsonexamples/github_events.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{github_events} 0.03630 0.66110 0.00001 25259.19598
orjson-{github_events} 0.18210 0.71230 0.00003 5073.48086
yyjson-{github_events} 0.20030 0.61270 0.00003 4589.71299
ujson-{github_events} 0.24260 1.05100 0.00007 3644.08240
json-{github_events} 0.29310 2.38770 0.00011 2967.79019
simplejson-{github_events} 0.30580 1.39670 0.00007 2931.01646
rapidjson-{github_events} 0.33340 0.80440 0.00004 2795.27887

jsonexamples/citm_catalog.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{citm_catalog} 5.40140 17.76900 0.00314 130.33847
yyjson-{citm_catalog} 5.77340 23.09490 0.00421 113.78942
✨ simdjson-{citm_catalog} 6.00620 26.87570 0.00444 104.41073
ujson-{citm_catalog} 6.34300 25.06400 0.00473 96.01414
simplejson-{citm_catalog} 9.54910 23.96350 0.00392 78.99315
json-{citm_catalog} 10.21250 23.52610 0.00329 78.72180
rapidjson-{citm_catalog} 10.81700 21.85400 0.00343 73.94939

jsonexamples/citm_catalog.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{citm_catalog} 0.81040 2.11090 0.00015 1088.17698
orjson-{citm_catalog} 5.37260 18.37890 0.00451 120.86345
yyjson-{citm_catalog} 5.61430 23.18500 0.00548 110.29924
ujson-{citm_catalog} 6.25850 30.79090 0.00604 95.50805
simplejson-{citm_catalog} 9.36560 24.44860 0.00510 77.50571
json-{citm_catalog} 10.07650 25.29490 0.00450 76.18267
rapidjson-{citm_catalog} 10.69120 27.84880 0.00493 70.98005

jsonexamples/mesh.json deserialization

Name Min (μs) Max (μs) StdDev Ops
yyjson-{mesh} 2.33710 13.01130 0.00171 331.50569
✨ simdjson-{mesh} 2.52960 13.19230 0.00159 311.37935
orjson-{mesh} 2.88770 12.13010 0.00152 287.31080
ujson-{mesh} 3.64020 18.23620 0.00227 193.35645
json-{mesh} 5.97130 13.58290 0.00136 150.01621
rapidjson-{mesh} 7.54270 16.14480 0.00155 119.37806
simplejson-{mesh} 8.64370 16.35320 0.00136 106.25888

jsonexamples/mesh.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 1.02020 2.74930 0.00013 919.93044
yyjson-{mesh} 2.30970 13.06730 0.00182 347.76076
orjson-{mesh} 2.85260 12.41860 0.00156 290.19432
ujson-{mesh} 3.59400 16.68610 0.00227 201.03704
json-{mesh} 5.96300 19.18900 0.00185 146.04645
rapidjson-{mesh} 7.43860 16.32260 0.00164 121.84979
simplejson-{mesh} 8.62160 21.89280 0.00221 101.30905

jsonexamples/gsoc-2018.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{gsoc-2018} 5.52590 16.27430 0.00178 145.59797
yyjson-{gsoc-2018} 5.62040 16.46250 0.00168 155.97459
orjson-{gsoc-2018} 5.78420 13.87300 0.00140 148.84293
simplejson-{gsoc-2018} 7.76200 15.26480 0.00142 114.98827
ujson-{gsoc-2018} 7.96570 21.53840 0.00188 110.29162
json-{gsoc-2018} 8.63300 19.26320 0.00172 102.78744
rapidjson-{gsoc-2018} 10.55570 19.20210 0.00159 85.84087

jsonexamples/gsoc-2018.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{gsoc-2018} 1.56020 4.20200 0.00024 570.15046
yyjson-{gsoc-2018} 5.49930 14.89760 0.00158 161.14242
orjson-{gsoc-2018} 5.72650 15.88270 0.00160 153.18169
simplejson-{gsoc-2018} 7.70780 18.78120 0.00169 116.90299
ujson-{gsoc-2018} 7.91720 21.35300 0.00227 103.06755
json-{gsoc-2018} 8.65190 19.99580 0.00188 103.86934
rapidjson-{gsoc-2018} 10.52410 20.98870 0.00158 87.78973

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysimdjson-3.1.0.tar.gz (339.4 kB view details)

Uploaded Source

Built Distributions

pysimdjson-3.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (169.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pysimdjson-3.1.0-cp38-cp38-win_amd64.whl (148.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

pysimdjson-3.1.0-cp38-cp38-macosx_10_14_x86_64.whl (187.9 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pysimdjson-3.1.0-cp37-cp37m-win_amd64.whl (147.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

pysimdjson-3.1.0-cp37-cp37m-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.7m

pysimdjson-3.1.0-cp37-cp37m-macosx_10_14_x86_64.whl (185.8 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

pysimdjson-3.1.0-cp36-cp36m-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.6m

pysimdjson-3.1.0-cp36-cp36m-macosx_10_14_x86_64.whl (185.6 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

pysimdjson-3.1.0-cp35-cp35m-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.5m

pysimdjson-3.1.0-cp35-cp35m-macosx_10_14_x86_64.whl (185.6 kB view details)

Uploaded CPython 3.5m macOS 10.14+ x86-64

File details

Details for the file pysimdjson-3.1.0.tar.gz.

File metadata

  • Download URL: pysimdjson-3.1.0.tar.gz
  • Upload date:
  • Size: 339.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0.tar.gz
Algorithm Hash digest
SHA256 d6bd39c666b6ad51bc120ed178b59ea761e500c570e487b6259b7f8d864c54ad
MD5 0ca9299c3d4fc14a2166b7618e0558a7
BLAKE2b-256 d4bc3e26ecd51f2f697f6e5cf7844e921b04e92419cd2d3674ff46611bd816f6

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 169.9 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 PyPy/7.3.2

File hashes

Hashes for pysimdjson-3.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82a06666dddd767bed092e3f188c0023676f9e1c2341b52385341778cb557fd3
MD5 c96052d51d23e42925ee515c427a970b
BLAKE2b-256 0853a5b111a4d0165f8e0e0c507dced944ff114060c6fbf3622b20d7b960372f

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 148.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 971d159983241f882201903cfa58e5d03df2fad3f5064e4a68ce2d67bea48a1f
MD5 0a7738c11b05dd4bda102ec7ac3b4e9b
BLAKE2b-256 982c3e68c6d28d61c51070b834b67a8d723e54812a916be98e1ecec5ad29d18f

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b6e92ea398875da8dadd797574e949be426cf4c382906797987d6441c6bc85e
MD5 646cf76f0974a06cde16b7c8356d1cdc
BLAKE2b-256 161780829b50107600156ff7694fe0a54446c60a24417475006b4230de54657b

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.1.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a1a113164a846722cd8712a5fde495df7f3f5aca600778514fdb3d219b371e3a
MD5 8e7bc48079f2fc3eb09f7273297132c9
BLAKE2b-256 084afda87a45cf964aa07d1baee760404068c02fc9cba0ed78155da30b5950ac

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 187.9 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ab5b8a64246d392e08322af4d969ed8e4f1321d94a313446a2f5f8d66b800ee4
MD5 d82d813e3d388762fa86d36203421567
BLAKE2b-256 df65e59e9b58686fef8d6a4957967b3b69c4db666a238c7eefaf266b7ab6754f

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 147.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for pysimdjson-3.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3fb0a1556cc6ec3b5a11a8b72c58e17e27ec3432bbcd5ac46e8e4edccbfb57bb
MD5 8cc15bf1e921a53481b63b77395b9110
BLAKE2b-256 513de60d1f20b55fa35f3d3cea649d9adf86def4b079fe36335afadf9b6d3eaf

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f912dabbe60a43ee2d1e020ebb1c202f3d107cbdd447e5ce704fa8d964a65bd3
MD5 03c5f2e618096fb64e7d4769c0ec83f8
BLAKE2b-256 23906c34dba2f79572e543492fa3a7053cba64123c90646fd56bdc8da37ac7ad

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.1.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13617f1bd03572a94f5021889e61637bf11cfb0e82d9cd3e71c14eb1a2b77dd5
MD5 b17f5a02aed01aad9665559e0b44bb9e
BLAKE2b-256 683de354a370fd780484e307d9fa01a943f5b067106c8b096804ffb9791dcf1b

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 185.8 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for pysimdjson-3.1.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a02ae6339accf2956f81d61e989d899cbccf7ba132aa76dda082326fab8778de
MD5 bf61b83f35c4fcbfb5eea092b3acc51b
BLAKE2b-256 edc607586385fbeb0fee95673f7ab02917bba9a67e2a6bac3ea05b576768b33b

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa8520c53eda14a2ffb9e05ad27cd4dbe2d3a0285ac92d267fdd0140f1fff590
MD5 8640e59172a1d099ff6afd45874137b0
BLAKE2b-256 82bfd625e8fe858ccc41043376ad00b021e3850ec86a6e2fa650f1a135c468ee

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.1.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d50add064b08a7a92bbe6587c4428c2cb243f3d0d5d99addeb2e097102f05053
MD5 4da4b43a7d20f5e8dda0b44c554c97e9
BLAKE2b-256 de1ce7bac74e286e57775ec7d154f0c5ec1c82e1b710f98ce7eaff1dc55cb256

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 185.6 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.12

File hashes

Hashes for pysimdjson-3.1.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8a7114c833a72c821705b5e7215d7775433730cb7437df0841d4c8945c8ac194
MD5 dedfb6caa7c0f942ba7b0728dd9f6dee
BLAKE2b-256 6e976305caa3d7d65314a092b540fb85e9743a5c161f7d7a123ed621fd603c7f

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp35-cp35m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp35-cp35m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.0-cp35-cp35m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d59aa06d83cc7409943505371d5f86d02c543ea9fd58eb40ac06892f52ac1b6
MD5 6a34522103e2e72561eb3c226da1633f
BLAKE2b-256 26f704e9cc26ba2065c4b094b0221bc4c36825e08d92694590c5364027b313fc

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.9

File hashes

Hashes for pysimdjson-3.1.0-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5669622318ef198224afe1160ae51f049da1c320f347a85fb1e190aab9d8bb8e
MD5 eb25c04766ef73aa53a6ad4d40dd024f
BLAKE2b-256 847d7b079bdf87a89ca8ef6946e8276c715310d6bfb85c3c7cf6261fa2a12299

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.0-cp35-cp35m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.0-cp35-cp35m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 185.6 kB
  • Tags: CPython 3.5m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.5.10

File hashes

Hashes for pysimdjson-3.1.0-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 08e49c5d163ad65841c600c56e674746dc9f325fac5e3d65b54731a97f85b19a
MD5 8e0f2b5b606fba66e31a6c9aa407c948
BLAKE2b-256 37448dbcacd236cde2c1d24f0d00fe8bd0a9765f91f886b45aea828dfdba2e49

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page