Skip to main content

simdjson bindings for python

Project description

PyPI - License Tests

pysimdjson

Python bindings for the simdjson project, a SIMD-accelerated JSON parser. If SIMD instructions are unavailable a fallback parser is used, making pysimdjson safe to use anywhere.

Bindings are currently tested on OS X, Linux, and Windows for Python version 3.5 to 3.9.

📝 Documentation

The latest documentation can be found at https://pysimdjson.tkte.ch.

If you've checked out the source code (for example to review a PR), you can build the latest documentation by running cd docs && make html.

🎉 Installation

If binary wheels are available for your platform, you can install from pip with no further requirements:

pip install pysimdjson

Binary wheels are available for the following:

py3.5 py3.6 py3.7 py3.8 py3.9 pypy3
OS X (x86_64) y y y y y y
Windows (x86_64) x x y y y x
Linux (x86_64) y y y y y x
Linux (ARM64) y y y y y x

If binary wheels are not available for your platform, you'll need a C++11-capable compiler to compile the sources:

pip install 'pysimdjson[dev]' --no-binary :all:

Both simdjson and pysimdjson support FreeBSD and Linux on ARM when built from source.

⚗ Development and Testing

This project comes with a full test suite. To install development and testing dependencies, use:

pip install -e ".[dev]"

To also install 3rd party JSON libraries used for running benchmarks, use:

pip install -e ".[benchmark]"

To run the tests, just type pytest. To also run the benchmarks, use pytest --runslow.

To properly test on Windows, you need both a recent version of Visual Studio (VS) as well as VS2015, patch 3. Older versions of CPython required portable C/C++ extensions to be built with the same version of VS as the interpreter. Use the Developer Command Prompt to easily switch between versions.

How It Works

This project uses pybind11 to generate the low-level bindings on top of the simdjson project. You can use it just like the built-in json module, or use the simdjson-specific API for much better performance.

import simdjson
doc = simdjson.loads('{"hello": "world"}')

🚀 Making things faster

pysimdjson provides an api compatible with the built-in json module for convenience, and this API is pretty fast (beating or tying all other Python JSON libraries). However, it also provides a simdjson-specific API that can perform significantly better.

Don't load the entire document

95% of the time spent loading a JSON document into Python is spent in the creation of Python objects, not the actual parsing of the document. You can avoid all of this overhead by ignoring parts of the document you don't want.

pysimdjson supports this in two ways - the use of JSON pointers via at(), or proxies for objects and lists.

import simdjson
parser = simdjson.Parser()
doc = parser.parse(b'{"res": [{"name": "first"}, {"name": "second"}]}')

For our sample above, we really just want the second entry in res, we don't care about anything else. We can do this two ways:

assert doc['res'][1]['name'] == 'second' # True
assert doc.at('res/1/name') == 'second' # True

Both of these approaches will be much faster than using load/s(), since they avoid loading the parts of the document we didn't care about.

Both Object and Array have a mini property that returns their entire content as a minified Python str. A message router for example would only parse the document and retrieve a single property, the destination, and forward the payload without ever turning it into a Python object. Here's a (bad) example:

import simdjson

@app.route('/store', methods=['POST'])
def store():
    parser = simdjson.Parser()
    doc = parser.parse(request.data)
    redis.set(doc['key'], doc.mini)

With this, doc could contain thousands of objects, but the only one loaded into a python object was key, and we even minified the content as we went.

Re-use the parser.

One of the easiest performance gains if you're working on many documents is to re-use the parser.

import simdjson
parser = simdjson.Parser()

for i in range(0, 100):
    doc = parser.parse(b'{"a": "b"}')

This will drastically reduce the number of allocations being made, as it will reuse the existing buffer when possible. If it's too small, it'll grow to fit.

📈 Benchmarks

pysimdjson compares well against most libraries for the default load/loads(), which creates full python objects immediately.

pysimdjson performs significantly better when only part of the document is of interest. For each test file we show the time taken to completely deserialize the document into Python objects, as well as the time to get the deepest key in each file. The second approach avoids all unnecessary object creation.

jsonexamples/canada.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 10.67130 22.89260 0.00465 60.30257
yyjson-{canada} 11.29230 29.90640 0.00568 53.27890
orjson-{canada} 11.90260 34.88260 0.00507 54.49605
ujson-{canada} 18.17060 48.99410 0.00718 36.24892
simplejson-{canada} 39.24630 52.62860 0.00483 21.81617
rapidjson-{canada} 41.04930 53.10800 0.00445 21.19078
json-{canada} 44.68320 59.44410 0.00440 19.71509

jsonexamples/canada.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{canada} 3.21360 6.88010 0.00044 285.83978
yyjson-{canada} 10.62770 46.10050 0.01000 43.29310
orjson-{canada} 12.54010 39.16080 0.00779 44.28928
ujson-{canada} 17.93980 35.44960 0.00697 36.78481
simplejson-{canada} 38.58160 54.33290 0.00699 21.37382
rapidjson-{canada} 40.69030 58.23460 0.00700 20.30349
json-{canada} 43.88300 65.04480 0.00722 18.55929

jsonexamples/twitter.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{twitter} 2.36070 14.03050 0.00123 346.94307
✨ simdjson-{twitter} 2.41350 12.01550 0.00117 359.49272
yyjson-{twitter} 2.48130 12.03680 0.00112 353.03313
ujson-{twitter} 2.62890 11.39370 0.00090 346.87994
simplejson-{twitter} 3.34600 11.08840 0.00098 270.58797
json-{twitter} 3.35270 11.82610 0.00116 260.01943
rapidjson-{twitter} 4.29320 13.81980 0.00128 197.91107

jsonexamples/twitter.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{twitter} 0.33840 0.67200 0.00002 2800.32496
orjson-{twitter} 2.38460 13.53120 0.00131 352.70788
yyjson-{twitter} 2.48180 13.67470 0.00156 320.56731
ujson-{twitter} 2.65230 11.65150 0.00125 331.69430
json-{twitter} 3.34910 12.44890 0.00116 263.25854
simplejson-{twitter} 3.35760 15.61900 0.00137 262.36758
rapidjson-{twitter} 4.31870 12.77490 0.00119 201.86510

jsonexamples/github_events.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{github_events} 0.18080 0.67020 0.00004 5041.29485
✨ simdjson-{github_events} 0.19470 0.61450 0.00003 4725.63489
yyjson-{github_events} 0.19710 0.53970 0.00004 4584.50870
ujson-{github_events} 0.23760 1.33490 0.00004 3904.08715
json-{github_events} 0.29030 1.32040 0.00009 3034.22530
simplejson-{github_events} 0.30210 0.82260 0.00005 3067.99997
rapidjson-{github_events} 0.33010 0.92400 0.00005 2793.93274

jsonexamples/github_events.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{github_events} 0.03630 0.66110 0.00001 25259.19598
orjson-{github_events} 0.18210 0.71230 0.00003 5073.48086
yyjson-{github_events} 0.20030 0.61270 0.00003 4589.71299
ujson-{github_events} 0.24260 1.05100 0.00007 3644.08240
json-{github_events} 0.29310 2.38770 0.00011 2967.79019
simplejson-{github_events} 0.30580 1.39670 0.00007 2931.01646
rapidjson-{github_events} 0.33340 0.80440 0.00004 2795.27887

jsonexamples/citm_catalog.json deserialization

Name Min (μs) Max (μs) StdDev Ops
orjson-{citm_catalog} 5.40140 17.76900 0.00314 130.33847
yyjson-{citm_catalog} 5.77340 23.09490 0.00421 113.78942
✨ simdjson-{citm_catalog} 6.00620 26.87570 0.00444 104.41073
ujson-{citm_catalog} 6.34300 25.06400 0.00473 96.01414
simplejson-{citm_catalog} 9.54910 23.96350 0.00392 78.99315
json-{citm_catalog} 10.21250 23.52610 0.00329 78.72180
rapidjson-{citm_catalog} 10.81700 21.85400 0.00343 73.94939

jsonexamples/citm_catalog.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{citm_catalog} 0.81040 2.11090 0.00015 1088.17698
orjson-{citm_catalog} 5.37260 18.37890 0.00451 120.86345
yyjson-{citm_catalog} 5.61430 23.18500 0.00548 110.29924
ujson-{citm_catalog} 6.25850 30.79090 0.00604 95.50805
simplejson-{citm_catalog} 9.36560 24.44860 0.00510 77.50571
json-{citm_catalog} 10.07650 25.29490 0.00450 76.18267
rapidjson-{citm_catalog} 10.69120 27.84880 0.00493 70.98005

jsonexamples/mesh.json deserialization

Name Min (μs) Max (μs) StdDev Ops
yyjson-{mesh} 2.33710 13.01130 0.00171 331.50569
✨ simdjson-{mesh} 2.52960 13.19230 0.00159 311.37935
orjson-{mesh} 2.88770 12.13010 0.00152 287.31080
ujson-{mesh} 3.64020 18.23620 0.00227 193.35645
json-{mesh} 5.97130 13.58290 0.00136 150.01621
rapidjson-{mesh} 7.54270 16.14480 0.00155 119.37806
simplejson-{mesh} 8.64370 16.35320 0.00136 106.25888

jsonexamples/mesh.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{mesh} 1.02020 2.74930 0.00013 919.93044
yyjson-{mesh} 2.30970 13.06730 0.00182 347.76076
orjson-{mesh} 2.85260 12.41860 0.00156 290.19432
ujson-{mesh} 3.59400 16.68610 0.00227 201.03704
json-{mesh} 5.96300 19.18900 0.00185 146.04645
rapidjson-{mesh} 7.43860 16.32260 0.00164 121.84979
simplejson-{mesh} 8.62160 21.89280 0.00221 101.30905

jsonexamples/gsoc-2018.json deserialization

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{gsoc-2018} 5.52590 16.27430 0.00178 145.59797
yyjson-{gsoc-2018} 5.62040 16.46250 0.00168 155.97459
orjson-{gsoc-2018} 5.78420 13.87300 0.00140 148.84293
simplejson-{gsoc-2018} 7.76200 15.26480 0.00142 114.98827
ujson-{gsoc-2018} 7.96570 21.53840 0.00188 110.29162
json-{gsoc-2018} 8.63300 19.26320 0.00172 102.78744
rapidjson-{gsoc-2018} 10.55570 19.20210 0.00159 85.84087

jsonexamples/gsoc-2018.json deepest key

Name Min (μs) Max (μs) StdDev Ops
✨ simdjson-{gsoc-2018} 1.56020 4.20200 0.00024 570.15046
yyjson-{gsoc-2018} 5.49930 14.89760 0.00158 161.14242
orjson-{gsoc-2018} 5.72650 15.88270 0.00160 153.18169
simplejson-{gsoc-2018} 7.70780 18.78120 0.00169 116.90299
ujson-{gsoc-2018} 7.91720 21.35300 0.00227 103.06755
json-{gsoc-2018} 8.65190 19.99580 0.00188 103.86934
rapidjson-{gsoc-2018} 10.52410 20.98870 0.00158 87.78973

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysimdjson-3.1.1.tar.gz (339.4 kB view details)

Uploaded Source

Built Distributions

pysimdjson-3.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (170.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pysimdjson-3.1.1-cp39-cp39-win_amd64.whl (149.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pysimdjson-3.1.1-cp39-cp39-macosx_10_14_x86_64.whl (188.8 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pysimdjson-3.1.1-cp38-cp38-win_amd64.whl (149.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

pysimdjson-3.1.1-cp38-cp38-manylinux2014_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.8

pysimdjson-3.1.1-cp38-cp38-macosx_10_14_x86_64.whl (188.9 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pysimdjson-3.1.1-cp37-cp37m-win_amd64.whl (148.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

pysimdjson-3.1.1-cp37-cp37m-manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.7m

pysimdjson-3.1.1-cp37-cp37m-macosx_10_14_x86_64.whl (186.5 kB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

pysimdjson-3.1.1-cp36-cp36m-manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.6m

pysimdjson-3.1.1-cp36-cp36m-macosx_10_14_x86_64.whl (186.4 kB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

pysimdjson-3.1.1-cp35-cp35m-manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.5m

pysimdjson-3.1.1-cp35-cp35m-macosx_10_14_x86_64.whl (186.4 kB view details)

Uploaded CPython 3.5m macOS 10.14+ x86-64

File details

Details for the file pysimdjson-3.1.1.tar.gz.

File metadata

  • Download URL: pysimdjson-3.1.1.tar.gz
  • Upload date:
  • Size: 339.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1.tar.gz
Algorithm Hash digest
SHA256 8ef4c7860ad3e2ae9dc154c05bedb39d9e246ba5f036e4112a4567a4cbda6ffe
MD5 e817d725267a075006408db2894d1582
BLAKE2b-256 18ebfbe9c9f9b953075d5e857787441819a68cd3579c1129d1785049a292a59e

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 170.8 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 PyPy/7.3.2

File hashes

Hashes for pysimdjson-3.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e4a004b9aee4869fbd94b8028ddd5317e7b6fb066faa1bff7d6c03d2e0ce2165
MD5 400eeacaed256c09daad7daa378bdcc9
BLAKE2b-256 67e11600b4576dd2e9c91a2cb3b2c78f17141961c9dbd37350316dce2b8b6314

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 149.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for pysimdjson-3.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 994598d3ac36a685117243a1d74a21b6b824d1e996ed94516f0d092fd82f4225
MD5 27954025eb146bcee08751b1370f442a
BLAKE2b-256 adc2f7e416b49c6b8a0871b1c6775832f668f22a651e7c9435c0fdda4f8e4ff6

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 188.8 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for pysimdjson-3.1.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9238b98027e64e06bc04a9977818a5537774933263887b2b499baf72ed7283a7
MD5 eb2dc4329861819ed0dc9c48c86f6129
BLAKE2b-256 5cf60c14be3aae712a8411ea2ffa16c3a07bcc0d01ed412856b1b08d76602ea1

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 149.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f88c33a26a0486ac7c228fe3617acdc263ba6648fa0dc16fe56e7407c5c9b738
MD5 e706ff0542c1fc1355707ce6d3edaf58
BLAKE2b-256 e7852b5d045edaa84ba162315e0d2914771f2c7fc142432127da40b436c3ccdf

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39b4ab1c44784dd846f6392f4dfb1bafc95a323e48033575674b61d35f7d5cc3
MD5 5495b92ce2a1fb7dcb45ed58edfecc72
BLAKE2b-256 588c727ae326736767fc521c3d3babdbb40a7be797a8eab6bc4c55c25a87869d

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 188.9 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 994e0220d07b3fb40f2da06046befd32f7c213fdf3c5a4f0837fa6dc87b574b0
MD5 2c99a996d0b94d96e1626eb809133832
BLAKE2b-256 d933e03e15ec73086118e2aa7c3c8e8856d262d3227e8ee7341ca56c9e183856

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 148.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for pysimdjson-3.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3381df7e6abacfa35cc9b239c1ec8fc890dfdcb4bb8977b3dc831a32e2014d2c
MD5 6a0361594a5fe5e2d068db10a882ab84
BLAKE2b-256 c2f007352c817a717d6d937074e5c2229dcb00260977dae22767d9709430c903

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcc0a369a078cf53b29b1078b334e73ddfd6eb0ed785464d1deca6671753f78a
MD5 e778b785289ecf3d637e5868151d224a
BLAKE2b-256 9a2f6b62c8b77c0986d7756fb019b784763eab1f4fae55c09616b880549c1479

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 186.5 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9

File hashes

Hashes for pysimdjson-3.1.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a2df1f17297d0fded04b11a227d89e32260674441a46d29355e02dc7b55643be
MD5 153bfb28d18149b858fc4be65990faff
BLAKE2b-256 b6a4079b33ea7cb478c78fa5778be615f8d0b2ac22b4cea565ed3988f3c1714a

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 726555cc69cf9af947e06980c5bf6984158cbb104aa1b33831bfc6acdb1ab9fe
MD5 cafcaa8aa8df198efd3d753afef9332e
BLAKE2b-256 81cf9eca97912d3d2c700c3e3cfdfb52cc5832151f1bcb01b56adde2f0f79414

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 186.4 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.12

File hashes

Hashes for pysimdjson-3.1.1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 7bd32618507d0cca8b53380feeea9b8f68ed0885d6c9f3eee5650af567855eda
MD5 53fbf83386268f4cb979a802deddc48a
BLAKE2b-256 2cdeba1037d8fa5d427cd226191c90227a128917047b5c81673f1d11779c9667

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp35-cp35m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp35-cp35m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for pysimdjson-3.1.1-cp35-cp35m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d8ff049beeca5a4e6cc605fa427a9214745090f8d1505587615fc8a2089b0d6
MD5 7d730f51b78137ab02385b80afa00bff
BLAKE2b-256 f83f4ec2c2ce1f6bb9596684f316bc38ce0996401bc2139e4e4a20d55ba36b9a

See more details on using hashes here.

File details

Details for the file pysimdjson-3.1.1-cp35-cp35m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: pysimdjson-3.1.1-cp35-cp35m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 186.4 kB
  • Tags: CPython 3.5m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.5.10

File hashes

Hashes for pysimdjson-3.1.1-cp35-cp35m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 84f352acbdc71f15c90d0f6ec095bf1e7f0ead9fea18ff6241b017b551fc2ef2
MD5 1808142de7f066471535ecab4ea4d0c0
BLAKE2b-256 79cd9e8095bf2d889d427f6d994ef729a2ef063746931def9952f79e58c8526e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page