Skip to main content

PySpark utility functions

Project description

pyspark-util

A set of pyspark utility functions.

import pyspark_util as psu

data = [(1, 2, 3)]
columns = ['a', 'b', 'c']
df = spark.createDataFrame(data, columns)
prefixed = psu.prefix_columns(df, 'x')
prefixed.show()

# output:
+---+---+---+
|x_a|x_b|x_c|
+---+---+---+
|  1|  2|  3|
+---+---+---+

Development

Setup

docker-compose build
docker-compose up -d

Lint

docker exec psu-cnt ./tools/lint.sh

Test

docker exec psu-cnt ./tools/test.sh

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pyspark_util-0.1.2-py3-none-any.whl (3.3 kB view details)

Uploaded Python 3

File details

Details for the file pyspark_util-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: pyspark_util-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 3.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2.post20191203 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.9

File hashes

Hashes for pyspark_util-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4b310d283bd18e4d3e20cf9cc2e2f0453e98e57040613ede1082cea1e6c7397b
MD5 051d3c13463abaa196e4ba0030eb478e
BLAKE2b-256 830c0acf6b0471dfee4a4c5969d87b462fce981bbc9c43a799df987c16b47cf8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page