Skip to main content

A tool that upgrades your PySpark scripts to Spark 3.3 as per Spark migration Guideline

Project description

PySparkler

About

PySparkler is a tool that upgrades your PySpark scripts to Spark 3.3. It is a command line tool that takes a PySpark script as input and outputs a Spark 3.3 compatible script. It is written in Python and uses the LibCST module to parse the input script and generate the output script.

Basic Usage

Install from PyPI:

pip install pysparkler

Provide the path to the script you want to upgrade:

pysparkler upgrade --input-file /path/to/script.py

Contributing

For the development, Poetry is used for packing and dependency management. You can install this using:

pip install poetry

If you have an older version of pip and virtualenv you need to update these:

pip install --upgrade virtualenv pip

Installation

To get started, you can run make install, which installs Poetry and all the dependencies of the PySparkler library. This also installs the development dependencies.

make install

If you don't want to install the development dependencies, you need to install using poetry install --only main.

If you want to install the library on the host, you can simply run pip3 install -e .. If you wish to use a virtual environment, you can run poetry shell. Poetry will open up a virtual environment with all the dependencies set.

IDE Setup

To set up IDEA with Poetry:

  • Open up the Python project in IntelliJ
  • Make sure that you're on latest master (that includes Poetry)
  • Go to File -> Project Structure (⌘;)
  • Go to Platform Settings -> SDKs
  • Click the + sign -> Add Python SDK
  • Select Poetry Environment from the left hand side bar and hit OK
  • It can take some time to download all the dependencies based on your internet
  • Go to Project Settings -> Project
  • Select the Poetry SDK from the SDK dropdown, and click OK

For IDEA ≤2021 you need to install the Poetry integration as a plugin.

Now you're set using Poetry, and all the tests will run in Poetry, and you'll have syntax highlighting in the pyproject.toml to indicate stale dependencies.

Linting

pre-commit is used for autoformatting and linting:

make lint

Pre-commit will automatically fix the violations such as import orders, formatting etc. Pylint errors you need to fix yourself.

In contrast to the name suggest, it doesn't run the checks on the commit. If this is something that you like, you can set this up by running pre-commit install.

You can bump the integrations to the latest version using pre-commit autoupdate. This will check if there is a newer version of {black,mypy,isort,...} and update the yaml.

Testing

For Python, pytest is used a testing framework in combination with coverage to enforce 90%+ code coverage.

make test

To pass additional arguments to pytest, you can use PYTEST_ARGS. For example, to run pytest in verbose mode:

make test PYTEST_ARGS="-v"

Architecture

Why LibCST?

LibCST is a Python library that provides a concrete syntax tree (CST) for Python code. CST preserves even the whitespaces of the source code which is very important since we only want to modify the code and not the formatting.

How does it work?

Using the codemod module of LibCST can simplify the process of writing a PySpark migration script, as it allows us to write small, reusable transformers and chain them together to perform a sequence of transformations.

Why Transformer Codemod? Why not Visitor?

The main advantage of using a Transformer is that it allows for more fine-grained control over the transformation process. Transformer classes can be defined to apply specific transformations to specific parts of the codebase, and multiple Transformer classes can be combined to form a chain of transformations. This can be useful when dealing with complex codebases where different parts of the code require different transformations.

More on this can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysparkler-0.3.dev1681170435.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

pysparkler-0.3.dev1681170435-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file pysparkler-0.3.dev1681170435.tar.gz.

File metadata

  • Download URL: pysparkler-0.3.dev1681170435.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1035-azure

File hashes

Hashes for pysparkler-0.3.dev1681170435.tar.gz
Algorithm Hash digest
SHA256 5ad76c8711af557e11239bf817971830f987beeea725a1c3cd30b1609a91dfe4
MD5 59de150eaf102a70d9fcb4aeab604526
BLAKE2b-256 e23cff73eb860185d39b74a0ae9df09ce35b8d8aee9410f56f5219a0ab75653e

See more details on using hashes here.

File details

Details for the file pysparkler-0.3.dev1681170435-py3-none-any.whl.

File metadata

File hashes

Hashes for pysparkler-0.3.dev1681170435-py3-none-any.whl
Algorithm Hash digest
SHA256 72a65ebf8b576744670d9166d5e2b5337ef16169fea70177273a32eaf7a567b5
MD5 8f006fd2153a51515e79bb16956e2068
BLAKE2b-256 0b1c84a6b9525c44aee42afb65214edcbbec13bcdcf0b87a49551411e0016d55

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page