Skip to main content

Simple HPC queuing system adapter for Python on based jinja templates to automate the submission script creation.

Project description

pysqa - a simple queue adapter for python

Python package Documentation Status Coverage Status

High-performance computing (HPC) does not have to be hard. In this context the aim of pysqa is to simplify the submission of calculation to an HPC cluster as easy as starting another subprocess locally. This is achieved based on the assumption that even though modern HPC queuing systems offer a wide range of different configuration options, most users submit the majority of their jobs with very similar parameters.

Therefore, in pysqa users define submission script templates once and reuse them to submit many different calculations or workflows. These templates are defined in the jinja2 template language, so current submission scripts can be easily extended to templates. In addition to the submission of new jobs to the queuing system pysqa also allows the users to track the progress of their jobs, delete them or enable reservations using the built-in functionality of the queuing system.

All this functionality is available from both a Python interface as well as a command line interface.

Features

The core feature of pysqa is the communication to an HPC queuing system (Flux, LFS, MOAB, SGE, SLURM and TORQUE). This includes:

  • Submission of new calculation to the queuing system.
  • List of calculation currently waiting or running on the queuing system.
  • Deleting calculation which are currently waiting or running on the queuing system.
  • List of available queue templates created by the user.
  • Restriction of templates to a specific number of cores, run time or other computing resources. With integrated checks if a given calculation follows these restrictions.

In addition to these core features, pysqa is continuously extended to support more use cases for a larger group of users. These new features include the support for remote queuing systems:

  • Remote connection via the secure shell protocol to access remote HPC clusters.
  • Transfer of file to and from remote HPC clusters, based on a predefined mapping of the remote file system into the local file system.
  • Support for both individual connections as well as continuous connections depending on the network availability.

Finally, there is current work in progress to support a combination of multiple local and remote queuing systems from within pysqa, which are represented to the user as a single resource.

Documentation

License

pysqa is released under the BSD license https://github.com/pyiron/pysqa/blob/main/LICENSE . It is a spin-off of the pyiron project https://github.com/pyiron/pyiron therefore if you use pysqa for calculation which result in a scientific publication, please cite:

@article{pyiron-paper,
  title = {pyiron: An integrated development environment for computational materials science},
  journal = {Computational Materials Science},
  volume = {163},
  pages = {24 - 36},
  year = {2019},
  issn = {0927-0256},
  doi = {https://doi.org/10.1016/j.commatsci.2018.07.043},
  url = {http://www.sciencedirect.com/science/article/pii/S0927025618304786},
  author = {Jan Janssen and Sudarsan Surendralal and Yury Lysogorskiy and Mira Todorova and Tilmann Hickel and Ralf Drautz and Jörg Neugebauer},
  keywords = {Modelling workflow, Integrated development environment, Complex simulation protocols},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pysqa-0.1.16.tar.gz (32.2 kB view details)

Uploaded Source

Built Distribution

pysqa-0.1.16-py3-none-any.whl (37.7 kB view details)

Uploaded Python 3

File details

Details for the file pysqa-0.1.16.tar.gz.

File metadata

  • Download URL: pysqa-0.1.16.tar.gz
  • Upload date:
  • Size: 32.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pysqa-0.1.16.tar.gz
Algorithm Hash digest
SHA256 1a0507a006a7eba2da83d202f108a261c17610b4b8e320bcb344c9fa982c0547
MD5 578bbad5aa59878070f6aa21c2585586
BLAKE2b-256 fcda1b464de5ec7d0af5336bca5e6d52dc7596c45aed046a19e8d3027c9ad6c0

See more details on using hashes here.

File details

Details for the file pysqa-0.1.16-py3-none-any.whl.

File metadata

  • Download URL: pysqa-0.1.16-py3-none-any.whl
  • Upload date:
  • Size: 37.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for pysqa-0.1.16-py3-none-any.whl
Algorithm Hash digest
SHA256 fdb708c98f5eac849df04dca0c59f892b207e6657f5f5dc4a5262dad88eaa162
MD5 33f8fa4303959bb842fb2043cd72a510
BLAKE2b-256 642a763e54649f53c2f5c31680793f26ad2021677408e34d960eb3f3fd191066

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page