Skip to main content

Easily pick a place to store data for your python package.

Project description

PyStow

Build status PyPI - Python Version License Documentation Status DOI Code style: black

👜 Easily pick a place to store data for your python code.

🚀 Getting Started

Get a directory for your application.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/pykeen
pykeen_directory = pystow.join('pykeen')

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pystow.join('pykeen', 'experiments')

# You can go as deep as you want
pykeen_deep_directory = pystow.join('pykeen', 'experiments', 'a', 'b', 'c')

If you reuse the same directory structure a lot, you can save them in a module:

import pystow

pykeen_module = pystow.module("pykeen")

# Access the module's directory with .base
assert pystow.join("pykeen") == pystow.module("pykeen").base

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pykeen_module.join('experiments')

# You can go as deep as you want past the original "pykeen" module
pykeen_deep_directory = pykeen_module.join('experiments', 'a', 'b', 'c')

Get a file path for your application by adding the name keyword argument. This is made explicit so PyStow knows which parent directories to automatically create. This works with pystow or any module you create with pystow.module.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/indra/database.tsv
indra_database_path = pystow.join('indra', 'database', name='database.tsv')

Ensure a file from the internet is available in your application's directory:

import pystow

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
path = pystow.ensure('pykeen', 'datasets', 'nations', url=url)

Ensure a tabular data file from the internet and load it for usage (requires pip install pandas):

import pystow
import pandas as pd

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
df: pd.DataFrame = pystow.ensure_csv('pykeen', 'datasets', 'nations', url=url)

Ensure a RDF file from the internet and load it for usage (requires pip install rdflib)

import pystow
import rdflib

url = 'https://ftp.expasy.org/databases/rhea/rdf/rhea.rdf.gz'
rdf_graph: rdflib.Graph = pystow.ensure_rdf('rhea', url=url)

Also see pystow.ensure_excel(), pystow.ensure_rdf(), pystow.ensure_zip_df(), and pystow.ensure_tar_df().

⚙️️ Configuration

By default, data is stored in the $HOME/.data directory. By default, the <app> app will create the $HOME/.data/<app> folder.

If you want to use an alternate folder name to .data inside the home directory, you can set the PYSTOW_NAME environment variable. For example, if you set PYSTOW_NAME=mydata, then the following code for the pykeen app will create the $HOME/mydata/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_NAME'] = 'mydata'

# Get a directory (as a pathlib.Path) for ~/mydata/pykeen
pykeen_directory = pystow.join('pykeen')

If you want to specify a completely custom directory that isn't relative to your home directory, you can set the PYSTOW_HOME environment variable. For example, if you set PYSTOW_HOME=/usr/local/, then the following code for the pykeen app will create the /usr/local/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_HOME'] = '/usr/local/'

# Get a directory (as a pathlib.Path) for /usr/local/pykeen
pykeen_directory = pystow.join('pykeen')

Note: if you set PYSTOW_HOME, then PYSTOW_NAME is disregarded.

XGD

While PyStow's main goal is to make application data less opaque and less hidden, some users might want to use the XGD spec for storing their app data.

If you set PYSTOW_USE_APPDIRS to true or True, then the appdirs package will be used to choose the base directory based on the user data dir option. This can still be overridden by PYSTOW_HOME.

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install pystow

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/cthoyt/pystow.git

To install in development mode, use the following:

$ git clone git+https://github.com/cthoyt/pystow.git
$ cd pystow
$ pip install -e .

⚖️ License

The code in this package is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystow-0.2.2.tar.gz (28.6 kB view details)

Uploaded Source

Built Distribution

pystow-0.2.2-py3-none-any.whl (21.5 kB view details)

Uploaded Python 3

File details

Details for the file pystow-0.2.2.tar.gz.

File metadata

  • Download URL: pystow-0.2.2.tar.gz
  • Upload date:
  • Size: 28.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for pystow-0.2.2.tar.gz
Algorithm Hash digest
SHA256 752c8dcf1e0a8a0058b5eab205e79b6e433fa7bbe18832053285c6f5122a670a
MD5 7de92d775fcebaec0cf917c3ae62b7db
BLAKE2b-256 23fb165fc58eb9aba25a9471c0bdabb80845402beb44857aeeb762f380c7e7a1

See more details on using hashes here.

Provenance

File details

Details for the file pystow-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: pystow-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 21.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for pystow-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6d0fbdebe62c6ea07fc20c01887eedbb09270ae058201bd9bb41691568efc422
MD5 f8bba7720560722d622e24efc8e1f0e2
BLAKE2b-256 9f198816879cff82efe541a47bde8f7bca56ef675ab740ae95b76609977c7ce0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page