Skip to main content

Easily pick a place to store data for your python package.

Project description

PyStow

Build status PyPI - Python Version License Documentation Status DOI Code style: black

👜 Easily pick a place to store data for your python code.

🚀 Getting Started

Get a directory for your application.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/pykeen
pykeen_directory = pystow.join('pykeen')

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pystow.join('pykeen', 'experiments')

# You can go as deep as you want
pykeen_deep_directory = pystow.join('pykeen', 'experiments', 'a', 'b', 'c')

If you reuse the same directory structure a lot, you can save them in a module:

import pystow

pykeen_module = pystow.module("pykeen")

# Access the module's directory with .base
assert pystow.join("pykeen") == pystow.module("pykeen").base

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pykeen_module.join('experiments')

# You can go as deep as you want past the original "pykeen" module
pykeen_deep_directory = pykeen_module.join('experiments', 'a', 'b', 'c')

Get a file path for your application by adding the name keyword argument. This is made explicit so PyStow knows which parent directories to automatically create. This works with pystow or any module you create with pystow.module.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/indra/database.tsv
indra_database_path = pystow.join('indra', 'database', name='database.tsv')

Ensure a file from the internet is available in your application's directory:

import pystow

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
path = pystow.ensure('pykeen', 'datasets', 'nations', url=url)

Ensure a tabular data file from the internet and load it for usage (requires pip install pandas):

import pystow
import pandas as pd

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
df: pd.DataFrame = pystow.ensure_csv('pykeen', 'datasets', 'nations', url=url)

Ensure a RDF file from the internet and load it for usage (requires pip install rdflib)

import pystow
import rdflib

url = 'https://ftp.expasy.org/databases/rhea/rdf/rhea.rdf.gz'
rdf_graph: rdflib.Graph = pystow.ensure_rdf('rhea', url=url)

Also see pystow.ensure_excel(), pystow.ensure_rdf(), pystow.ensure_zip_df(), and pystow.ensure_tar_df().

⚙️️ Configuration

By default, data is stored in the $HOME/.data directory. By default, the <app> app will create the $HOME/.data/<app> folder.

If you want to use an alternate folder name to .data inside the home directory, you can set the PYSTOW_NAME environment variable. For example, if you set PYSTOW_NAME=mydata, then the following code for the pykeen app will create the $HOME/mydata/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_NAME'] = 'mydata'

# Get a directory (as a pathlib.Path) for ~/mydata/pykeen
pykeen_directory = pystow.join('pykeen')

If you want to specify a completely custom directory that isn't relative to your home directory, you can set the PYSTOW_HOME environment variable. For example, if you set PYSTOW_HOME=/usr/local/, then the following code for the pykeen app will create the /usr/local/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_HOME'] = '/usr/local/'

# Get a directory (as a pathlib.Path) for /usr/local/pykeen
pykeen_directory = pystow.join('pykeen')

Note: if you set PYSTOW_HOME, then PYSTOW_NAME is disregarded.

XGD

While PyStow's main goal is to make application data less opaque and less hidden, some users might want to use the XGD spec for storing their app data.

If you set PYSTOW_USE_APPDIRS to true or True, then the appdirs package will be used to choose the base directory based on the user data dir option. This can still be overridden by PYSTOW_HOME.

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install pystow

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/cthoyt/pystow.git

To install in development mode, use the following:

$ git clone git+https://github.com/cthoyt/pystow.git
$ cd pystow
$ pip install -e .

⚖️ License

The code in this package is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystow-0.2.4.tar.gz (28.7 kB view details)

Uploaded Source

Built Distribution

pystow-0.2.4-py3-none-any.whl (21.6 kB view details)

Uploaded Python 3

File details

Details for the file pystow-0.2.4.tar.gz.

File metadata

  • Download URL: pystow-0.2.4.tar.gz
  • Upload date:
  • Size: 28.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for pystow-0.2.4.tar.gz
Algorithm Hash digest
SHA256 8cf364ca5b787b7d4479ef1b0751d6fb7480d7de948d6ede1e82d9216b79cee0
MD5 0648aae0f0045440ca55abb7a4df1a7a
BLAKE2b-256 8894feb2b14b4c0526f21b26c28176e1dd28989ddc9f1c94d913e6d61e924dd5

See more details on using hashes here.

Provenance

File details

Details for the file pystow-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: pystow-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 21.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for pystow-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 bde0660498847773c7a53f069676514a08b25c0501345179d9a51c931175e858
MD5 8d9c7447cc5e75d0ef1048d6cd132697
BLAKE2b-256 34373726e12064c4baa6a6ad620adcc6a17b64ed13b28d2d68eadbba4f844a62

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page