Skip to main content

Easily pick a place to store data for your python package.

Reason this release was yanked:

Accidentally released without important commit

Project description

PyStow

Build status PyPI - Python Version License Documentation Status DOI Code style: black

👜 Easily pick a place to store data for your python code.

🚀 Getting Started

Get a directory for your application.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/pykeen
pykeen_directory = pystow.join('pykeen')

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pystow.join('pykeen', 'experiments')

# You can go as deep as you want
pykeen_deep_directory = pystow.join('pykeen', 'experiments', 'a', 'b', 'c')

If you reuse the same directory structure a lot, you can save them in a module:

import pystow

pykeen_module = pystow.module("pykeen")

# Access the module's directory with .base
assert pystow.join("pykeen") == pystow.module("pykeen").base

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pykeen_module.join('experiments')

# You can go as deep as you want past the original "pykeen" module
pykeen_deep_directory = pykeen_module.join('experiments', 'a', 'b', 'c')

Get a file path for your application by adding the name keyword argument. This is made explicit so PyStow knows which parent directories to automatically create. This works with pystow or any module you create with pystow.module.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/indra/database.tsv
indra_database_path = pystow.join('indra', 'database', name='database.tsv')

Ensure a file from the internet is available in your application's directory:

import pystow

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
path = pystow.ensure('pykeen', 'datasets', 'nations', url=url)

Ensure a tabular data file from the internet and load it for usage (requires pip install pandas):

import pystow
import pandas as pd

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
df: pd.DataFrame = pystow.ensure_csv('pykeen', 'datasets', 'nations', url=url)

Ensure a comma-separated tabular data file from the internet and load it for usage (requires pip install pandas):

import pystow
import pandas as pd

url = 'https://raw.githubusercontent.com/cthoyt/pystow/main/tests/resources/test_1.csv'
df: pd.DataFrame = pystow.ensure_csv('pykeen', 'datasets', 'nations', url=url, read_csv_kwargs=dict(sep=","))

Ensure a RDF file from the internet and load it for usage (requires pip install rdflib)

import pystow
import rdflib

url = 'https://ftp.expasy.org/databases/rhea/rdf/rhea.rdf.gz'
rdf_graph: rdflib.Graph = pystow.ensure_rdf('rhea', url=url)

Also see pystow.ensure_excel(), pystow.ensure_rdf(), pystow.ensure_zip_df(), and pystow.ensure_tar_df().

If your data comes with a lot of different files in an archive, you can ensure the archive is downloaded and get specific files from it:

import numpy as np
import pystow

url = "https://cloud.enterprise.informatik.uni-leipzig.de/index.php/s/LHPbMCre7SLqajB/download/MultiKE_D_Y_15K_V1.zip"
# the path inside the archive to the file you want
inner_path = "MultiKE/D_Y_15K_V1/721_5fold/1/20210219183115/ent_embeds.npy"
with pystow.ensure_open_zip("kiez", url=url, inner_path=inner_path) as file:
    emb = np.load(file)

Also see pystow.module.ensure_open_lzma(), pystow.module.ensure_open_tarfile() and pystow.module.ensure_open_gz().

⚙️️ Configuration

By default, data is stored in the $HOME/.data directory. By default, the <app> app will create the $HOME/.data/<app> folder.

If you want to use an alternate folder name to .data inside the home directory, you can set the PYSTOW_NAME environment variable. For example, if you set PYSTOW_NAME=mydata, then the following code for the pykeen app will create the $HOME/mydata/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_NAME'] = 'mydata'

# Get a directory (as a pathlib.Path) for ~/mydata/pykeen
pykeen_directory = pystow.join('pykeen')

If you want to specify a completely custom directory that isn't relative to your home directory, you can set the PYSTOW_HOME environment variable. For example, if you set PYSTOW_HOME=/usr/local/, then the following code for the pykeen app will create the /usr/local/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_HOME'] = '/usr/local/'

# Get a directory (as a pathlib.Path) for /usr/local/pykeen
pykeen_directory = pystow.join('pykeen')

Note: if you set PYSTOW_HOME, then PYSTOW_NAME is disregarded.

X Desktop Group (XDG) Compatibility

While PyStow's main goal is to make application data less opaque and less hidden, some users might want to use the XDG specifications for storing their app data.

If you set the environment variable PYSTOW_USE_APPDIRS to true or True, then the appdirs package will be used to choose the base directory based on the user data dir option. This can still be overridden by PYSTOW_HOME.

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install pystow

Note, as of v0.3.0, Python 3.6 isn't officially supported (its end-of-life was in December 2021). For the time being, pystow might still work on py36, but this is only coincidental.

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/cthoyt/pystow.git

To install in development mode, use the following:

$ git clone git+https://github.com/cthoyt/pystow.git
$ cd pystow
$ pip install -e .

⚖️ License

The code in this package is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystow-0.5.1.tar.gz (44.9 kB view details)

Uploaded Source

Built Distribution

pystow-0.5.1-py3-none-any.whl (31.7 kB view details)

Uploaded Python 3

File details

Details for the file pystow-0.5.1.tar.gz.

File metadata

  • Download URL: pystow-0.5.1.tar.gz
  • Upload date:
  • Size: 44.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pystow-0.5.1.tar.gz
Algorithm Hash digest
SHA256 ba6d0b56af6d553577c14d6b9a70bf9f2771168a6f7dc127443bd73a3e4e347a
MD5 7eedf07962d6e86d837f8e70ff3ca5c8
BLAKE2b-256 9acdcf9ba9e7be6ec6266c056b69803081d4bc9003c8634f1c513a1c3c99b81d

See more details on using hashes here.

Provenance

File details

Details for the file pystow-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: pystow-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 31.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pystow-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dfdd7234ad56cd436d09f8facbb4fc72493c00902fa2b26e56d1d21f51a2ed4e
MD5 1b22290aadca1ddb4e47d14c63fa6e88
BLAKE2b-256 f3a15b480435c650d39129f3e5b03c0f3762da0095fc3f7735f06527d177913c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page