Skip to main content

Easily pick a place to store data for your python package.

Project description

PyStow

Build status PyPI - Python Version License Documentation Status DOI Code style: black

👜 Easily pick a place to store data for your python code.

🚀 Getting Started

Get a directory for your application.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/pykeen
pykeen_directory = pystow.join('pykeen')

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pystow.join('pykeen', 'experiments')

# You can go as deep as you want
pykeen_deep_directory = pystow.join('pykeen', 'experiments', 'a', 'b', 'c')

If you reuse the same directory structure a lot, you can save them in a module:

import pystow

pykeen_module = pystow.module("pykeen")

# Access the module's directory with .base
assert pystow.join("pykeen") == pystow.module("pykeen").base

# Get a subdirectory (as a pathlib.Path) for ~/.data/pykeen/experiments
pykeen_experiments_directory = pykeen_module.join('experiments')

# You can go as deep as you want past the original "pykeen" module
pykeen_deep_directory = pykeen_module.join('experiments', 'a', 'b', 'c')

Get a file path for your application by adding the name keyword argument. This is made explicit so PyStow knows which parent directories to automatically create. This works with pystow or any module you create with pystow.module.

import pystow

# Get a directory (as a pathlib.Path) for ~/.data/indra/database.tsv
indra_database_path = pystow.join('indra', 'database', name='database.tsv')

Ensure a file from the internet is available in your application's directory:

import pystow

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
path = pystow.ensure('pykeen', 'datasets', 'nations', url=url)

Ensure a tabular data file from the internet and load it for usage (requires pip install pandas):

import pystow
import pandas as pd

url = 'https://raw.githubusercontent.com/pykeen/pykeen/master/src/pykeen/datasets/nations/test.txt'
df: pd.DataFrame = pystow.ensure_csv('pykeen', 'datasets', 'nations', url=url)

Ensure a comma-separated tabular data file from the internet and load it for usage (requires pip install pandas):

import pystow
import pandas as pd

url = 'https://raw.githubusercontent.com/cthoyt/pystow/main/tests/resources/test_1.csv'
df: pd.DataFrame = pystow.ensure_csv('pykeen', 'datasets', 'nations', url=url, read_csv_kwargs=dict(sep=","))

Ensure a RDF file from the internet and load it for usage (requires pip install rdflib)

import pystow
import rdflib

url = 'https://ftp.expasy.org/databases/rhea/rdf/rhea.rdf.gz'
rdf_graph: rdflib.Graph = pystow.ensure_rdf('rhea', url=url)

Also see pystow.ensure_excel(), pystow.ensure_rdf(), pystow.ensure_zip_df(), and pystow.ensure_tar_df().

If your data comes with a lot of different files in an archive, you can ensure the archive is downloaded and get specific files from it:

import numpy as np
import pystow

url = "https://cloud.enterprise.informatik.uni-leipzig.de/index.php/s/LHPbMCre7SLqajB/download/MultiKE_D_Y_15K_V1.zip"
# the path inside the archive to the file you want
inner_path = "MultiKE/D_Y_15K_V1/721_5fold/1/20210219183115/ent_embeds.npy"
with pystow.ensure_open_zip("kiez", url=url, inner_path=inner_path) as file:
    emb = np.load(file)

Also see pystow.module.ensure_open_lzma(), pystow.module.ensure_open_tarfile() and pystow.module.ensure_open_gz().

⚙️️ Configuration

By default, data is stored in the $HOME/.data directory. By default, the <app> app will create the $HOME/.data/<app> folder.

If you want to use an alternate folder name to .data inside the home directory, you can set the PYSTOW_NAME environment variable. For example, if you set PYSTOW_NAME=mydata, then the following code for the pykeen app will create the $HOME/mydata/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_NAME'] = 'mydata'

# Get a directory (as a pathlib.Path) for ~/mydata/pykeen
pykeen_directory = pystow.join('pykeen')

If you want to specify a completely custom directory that isn't relative to your home directory, you can set the PYSTOW_HOME environment variable. For example, if you set PYSTOW_HOME=/usr/local/, then the following code for the pykeen app will create the /usr/local/pykeen/ directory:

import os
import pystow

# Only for demonstration purposes. You should set environment
# variables either with your .bashrc or in the command line REPL.
os.environ['PYSTOW_HOME'] = '/usr/local/'

# Get a directory (as a pathlib.Path) for /usr/local/pykeen
pykeen_directory = pystow.join('pykeen')

Note: if you set PYSTOW_HOME, then PYSTOW_NAME is disregarded.

X Desktop Group (XDG) Compatibility

While PyStow's main goal is to make application data less opaque and less hidden, some users might want to use the XDG specifications for storing their app data.

If you set the environment variable PYSTOW_USE_APPDIRS to true or True, then the appdirs package will be used to choose the base directory based on the user data dir option. This can still be overridden by PYSTOW_HOME.

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install pystow

Note, as of v0.3.0, Python 3.6 isn't officially supported (its end-of-life was in December 2021). For the time being, pystow might still work on py36, but this is only coincidental.

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/cthoyt/pystow.git

To install in development mode, use the following:

$ git clone git+https://github.com/cthoyt/pystow.git
$ cd pystow
$ pip install -e .

⚖️ License

The code in this package is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pystow-0.5.2.tar.gz (45.1 kB view details)

Uploaded Source

Built Distribution

pystow-0.5.2-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file pystow-0.5.2.tar.gz.

File metadata

  • Download URL: pystow-0.5.2.tar.gz
  • Upload date:
  • Size: 45.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pystow-0.5.2.tar.gz
Algorithm Hash digest
SHA256 d05d233299d61b50f53c7de220d990ec4c58e3a54d195d8449f0302563eb6de6
MD5 294cbffb18eeb62df4a02e54422e60b6
BLAKE2b-256 3b065e0ac012cd22c43a3430a615c4652839b35c4447d7d43fc198dfebb6a2f0

See more details on using hashes here.

Provenance

File details

Details for the file pystow-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: pystow-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for pystow-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c0faeb0fc854ede714be7949555f4d55ce40d8fd57f0ae1ff75e86158792299a
MD5 192fd15f65050be46362efc5137a6928
BLAKE2b-256 90c46ea4acc335cc3bed61700fa1f5091b8fab19bf8a11eb0665d4cfd7686c83

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page