Skip to main content

Treasure Data Driver for Python

Project description

Build Status Build status PyPI version docs status

pytd provides user-friendly interfaces to Treasure Data’s REST APIs, Presto query engine, and Plazma primary storage.

The seamless connection allows your Python code to efficiently read/write a large volume of data from/to Treasure Data. Eventually, pytd makes your day-to-day data analytics work more productive.

Installation

pip install pytd

Usage

Set your API key and endpoint to the environment variables, TD_API_KEY and TD_API_SERVER, respectively, and create a client instance:

import pytd

client = pytd.Client(database='sample_datasets')
# or, hard-code your API key, endpoint, and/or query engine:
# >>> pytd.Client(apikey='1/XXX', endpoint='https://api.treasuredata.com/', database='sample_datasets', default_engine='presto')

Query in Treasure Data

Issue Presto query and retrieve the result:

client.query('select symbol, count(1) as cnt from nasdaq group by 1 order by 1')
# {'columns': ['symbol', 'cnt'], 'data': [['AAIT', 590], ['AAL', 82], ['AAME', 9252], ..., ['ZUMZ', 2364]]}

In case of Hive:

client.query('select hivemall_version()', engine='hive')
# {'columns': ['_c0'], 'data': [['0.6.0-SNAPSHOT-201901-r01']]} (as of Feb, 2019)

It is also possible to explicitly initialize pytd.Client for Hive:

client_hive = pytd.Client(database='sample_datasets', default_engine='hive')
client_hive.query('select hivemall_version()')

Write data to Treasure Data

Data represented as pandas.DataFrame can be written to Treasure Data as follows:

import pandas as pd

df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 10]})
client.load_table_from_dataframe(df, 'takuti.foo', writer='bulk_import', if_exists='overwrite')

For the writer option, pytd supports three different ways to ingest data to Treasure Data:

  1. Bulk Import API: bulk_import (default)

    • Convert data into a CSV file and upload in the batch fashion.

  2. Presto INSERT INTO query: insert_into

    • Insert every single row in DataFrame by issuing an INSERT INTO query through the Presto query engine.

    • Recommended only for a small volume of data.

  3. td-spark: spark

    • Local customized Spark instance directly writes DataFrame to Treasure Data’s primary storage system.

Characteristics of each of these methods can be summarized as follows:

bulk_import

insert_into

spark

Scalable against data volume

Write performance for larger data

Memory efficient

Disk efficient

Minimal package dependency

Enabling Spark Writer

Since td-spark gives special access to the main storage system via PySpark, follow the instructions below:

  1. Contact support@treasuredata.com to activate the permission to your Treasure Data account.

  2. Install pytd with [spark] option if you use the third option: pip install pytd[spark]

If you want to use existing td-spark JAR file, creating SparkWriter with td_spark_path option would be helpful.

from pytd.writer import SparkWriter

writer = SparkWriter(apikey='1/XXX', endpoint='https://api.treasuredata.com/', td_spark_path='/path/to/td-spark-assembly.jar')
client.load_table_from_dataframe(df, 'mydb.bar', writer=writer, if_exists='overwrite')

How to replace pandas-td

pytd offers pandas-td-compatible functions that provide the same functionalities more efficiently. If you are still using pandas-td, we recommend you to switch to pytd as follows.

First, install the package from PyPI:

pip install pytd
# or, `pip install pytd[spark]` if you wish to use `to_td`

Next, make the following modifications on the import statements.

Before:

import pandas_td as td
In [1]: %%load_ext pandas_td.ipython

After:

import pytd.pandas_td as td
In [1]: %%load_ext pytd.pandas_td.ipython

Consequently, all pandas_td code should keep running correctly with pytd. Report an issue from here if you noticed any incompatible behaviors.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytd-1.1.0.tar.gz (30.1 kB view details)

Uploaded Source

Built Distribution

pytd-1.1.0-py3-none-any.whl (31.9 kB view details)

Uploaded Python 3

File details

Details for the file pytd-1.1.0.tar.gz.

File metadata

  • Download URL: pytd-1.1.0.tar.gz
  • Upload date:
  • Size: 30.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.23.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for pytd-1.1.0.tar.gz
Algorithm Hash digest
SHA256 1859a1373ee63857b7b0efdf91f5ebc0d4c88853c8334cc52b1f8df2dac03eef
MD5 368532f26b8d93cbae70688afb28d9d9
BLAKE2b-256 dd70985ef2c198876a5160a7946d126f4a71d2a328fdf65748533e734b0dd7b1

See more details on using hashes here.

File details

Details for the file pytd-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: pytd-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 31.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.23.0 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for pytd-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 167bba1f78617723f2a5104e5c79741b52936a67b996710c8bc78dc104002927
MD5 11492ec714285a88cf2f5feeaa8e7bdb
BLAKE2b-256 e5d0c5382d3d98421a8c72a1fea26c00da373f33bc5f5a5ba9cd18731a31004d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page