A framework for proteomics data analysis.
Project description
What is Pyteomics?
------------------
Pyteomics is a collection of lightweight and handy tools for Python that help
to handle various sorts of proteomics data. Pyteomics provides a growing set of
modules to facilitate the most common tasks in proteomics data analysis, such as:
* calculation of basic physico-chemical properties of polypeptides:
* mass and isotopic distribution
* charge and pI
* chromatographic retention time
* access to common proteomics data:
* MS or LC-MS data
* FASTA databases
* search engines output
* easy manipulation of sequences of modified peptides and proteins
The goal of the Pyteomics project is to provide a versatile, reliable and
well-documented set of open tools for the wide proteomics community.
One of the project's key features is Python itself, an open source language
increasingly popular in scientific programming. The main
applications of the library are reproducible statistical data analysis and rapid
software prototyping.
Required Python versions
------------------------
Pyteomics supports Python 2.7 and Python 3. Python 2.6 and older are not supported.
Project dependencies
--------------------
Pyteomics uses the following python packages:
- `numpy <http://pypi.python.org/pypi/numpy>`_
- `matplotlib <http://sourceforge.net/projects/matplotlib/files/matplotlib/>`_ (used by pyteomics.pylab_aux)
- `lxml <http://pypi.python.org/pypi/lxml/2.3>`_ (used by pyteomics.mzml, pyteomics.pepxml, pyteomics.mzid)
GNU/Linux
---------
The preferred way to obtain Pyteomics is via pip Python
package manager. The shell code for a freshly installed Ubuntu system::
sudo apt-get install python-setuptools python-dev build-essential
sudo easy_install pip
sudo pip install lxml numpy matplotlib pyteomics
Windows
-------
- Download pre-compiled binary packages for Pyteomics dependencies:
- `numpy <http://pypi.python.org/pypi/numpy>`_
- `matplotlib <http://sourceforge.net/projects/matplotlib/files/matplotlib/>`_
- `lxml <http://pypi.python.org/pypi/lxml>`_
- Download a pre-compiled binary Pyteomics package from the `list <http://pypi.python.org/pypi/pyteomics#downloads>`_.
OR
- If you have Enthought Python Distribution / ActivePython,
execute in the command line::
easy_install pip
pip install lxml numpy matplotlib pyteomics
------------------
Pyteomics is a collection of lightweight and handy tools for Python that help
to handle various sorts of proteomics data. Pyteomics provides a growing set of
modules to facilitate the most common tasks in proteomics data analysis, such as:
* calculation of basic physico-chemical properties of polypeptides:
* mass and isotopic distribution
* charge and pI
* chromatographic retention time
* access to common proteomics data:
* MS or LC-MS data
* FASTA databases
* search engines output
* easy manipulation of sequences of modified peptides and proteins
The goal of the Pyteomics project is to provide a versatile, reliable and
well-documented set of open tools for the wide proteomics community.
One of the project's key features is Python itself, an open source language
increasingly popular in scientific programming. The main
applications of the library are reproducible statistical data analysis and rapid
software prototyping.
Required Python versions
------------------------
Pyteomics supports Python 2.7 and Python 3. Python 2.6 and older are not supported.
Project dependencies
--------------------
Pyteomics uses the following python packages:
- `numpy <http://pypi.python.org/pypi/numpy>`_
- `matplotlib <http://sourceforge.net/projects/matplotlib/files/matplotlib/>`_ (used by pyteomics.pylab_aux)
- `lxml <http://pypi.python.org/pypi/lxml/2.3>`_ (used by pyteomics.mzml, pyteomics.pepxml, pyteomics.mzid)
GNU/Linux
---------
The preferred way to obtain Pyteomics is via pip Python
package manager. The shell code for a freshly installed Ubuntu system::
sudo apt-get install python-setuptools python-dev build-essential
sudo easy_install pip
sudo pip install lxml numpy matplotlib pyteomics
Windows
-------
- Download pre-compiled binary packages for Pyteomics dependencies:
- `numpy <http://pypi.python.org/pypi/numpy>`_
- `matplotlib <http://sourceforge.net/projects/matplotlib/files/matplotlib/>`_
- `lxml <http://pypi.python.org/pypi/lxml>`_
- Download a pre-compiled binary Pyteomics package from the `list <http://pypi.python.org/pypi/pyteomics#downloads>`_.
OR
- If you have Enthought Python Distribution / ActivePython,
execute in the command line::
easy_install pip
pip install lxml numpy matplotlib pyteomics
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyteomics-2.2.0.tar.gz
(73.4 kB
view details)
Built Distributions
pyteomics-2.2.0.win-amd64_py3.3.exe
(284.2 kB
view details)
pyteomics-2.2.0.win-amd64_py3.2.exe
(286.2 kB
view details)
pyteomics-2.2.0.win-amd64_py2.7.exe
(285.7 kB
view details)
pyteomics-2.2.0.win32_py3.3.exe
(252.9 kB
view details)
pyteomics-2.2.0.win32_py3.2.exe
(258.1 kB
view details)
pyteomics-2.2.0.win32_py2.7.exe
(258.1 kB
view details)
File details
Details for the file pyteomics-2.2.0.tar.gz
.
File metadata
- Download URL: pyteomics-2.2.0.tar.gz
- Upload date:
- Size: 73.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1b4c08495bcd6aa9891db9e0fe9f979058cf1052a5f6d7d6e94e87980c2100b1 |
|
MD5 | 130d201ef0952985d23f5a5ce518dc29 |
|
BLAKE2b-256 | 5f79196d3e298c7d8550d6900cf22bac0221a2b3b54d82e90df91ff29d8e634a |
File details
Details for the file pyteomics-2.2.0.win-amd64_py3.3.exe
.
File metadata
- Download URL: pyteomics-2.2.0.win-amd64_py3.3.exe
- Upload date:
- Size: 284.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c3a0ee25a63f5506ce4442e5739029f6a1f6ad9911fae8d998b7951ee90617c |
|
MD5 | 1f51b159d8b2a4f8a661ce2f4df87362 |
|
BLAKE2b-256 | 6a713a697acca9c5c0812106c83526ca3532126f1abb95955b887fc2190af8cf |
File details
Details for the file pyteomics-2.2.0.win-amd64_py3.2.exe
.
File metadata
- Download URL: pyteomics-2.2.0.win-amd64_py3.2.exe
- Upload date:
- Size: 286.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 362d47227a52fde6bbeb4a08f10d8d5e12de48e4b5d7e137aace4a851ae5e7ca |
|
MD5 | 1769d3c649596addbdcec2c825f103ca |
|
BLAKE2b-256 | 572c004d7d9ee698cd730f6fdf17a0908265934aa525146b7beaac28e7128dc1 |
File details
Details for the file pyteomics-2.2.0.win-amd64_py2.7.exe
.
File metadata
- Download URL: pyteomics-2.2.0.win-amd64_py2.7.exe
- Upload date:
- Size: 285.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d51fdf77f5be03d6e96b31bb359609e694d87926ae35aad24b317047d779d25d |
|
MD5 | 34cd7c643d095a5a59a8917c34a9245e |
|
BLAKE2b-256 | 70ff14d614f6b7ff7fe77460f3cd2851eb62c68a23e51220e58ef6533ecb2516 |
File details
Details for the file pyteomics-2.2.0.win32_py3.3.exe
.
File metadata
- Download URL: pyteomics-2.2.0.win32_py3.3.exe
- Upload date:
- Size: 252.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11794b81599fe6288c91a9569fbe9694433e8dde843ec33cfffd226f360c03fc |
|
MD5 | 48639fe64a587f15441c25e6f7454a62 |
|
BLAKE2b-256 | ccded00712e0fbf7ff64532d2426a0d13a9e04419dc5f99e48b8dacbc8980a6a |
File details
Details for the file pyteomics-2.2.0.win32_py3.2.exe
.
File metadata
- Download URL: pyteomics-2.2.0.win32_py3.2.exe
- Upload date:
- Size: 258.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa3be6694d649fa6ca0c2c87d28c18739d4199c3b7154d3c8c29c31f862cdd4e |
|
MD5 | ff525b50950349c83586c4322ab54e0b |
|
BLAKE2b-256 | 1145748d2c45934668a85f4f86024a31f2c88e0357d1295af7ff183ad0451022 |
File details
Details for the file pyteomics-2.2.0.win32_py2.7.exe
.
File metadata
- Download URL: pyteomics-2.2.0.win32_py2.7.exe
- Upload date:
- Size: 258.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9797a33a534156fb7c1c73341e8f73d223c21ff35cc525751e4c80b8e01c150 |
|
MD5 | 0e73f0185f89262e08889ec03773adac |
|
BLAKE2b-256 | f2ce8fe3ca8884c15dfeeca9730cd2d49592763e26c146327150d539492fbd91 |