Skip to main content

Simple Thai Wordcut in Python using Maximum Matching

Project description

# pythaiwordcut - Thai Wordcut in Python

A simple Thai wordcut written in Python, based on Maximum Matching algorithm by [S. Manabu](http://www.aclweb.org/anthology/E14-4016)
. Uses Lexitron (by [NECTEC](http://www.sansarn.com/lexto/license-lexitron.php)) dictionary as default

> Please note: This project is under development and should not be use in production , all function and interface are subject to change. If you have issue or suggestion please feel free to ask, contribution is also very welcome :)

## Installation

```
pip install pythaiwordcut
```

or

```
git clone https://github.com/zenyai/pythaiwordcut.git
python setup.py install
```

## Usage
```
import pythaiwordcut as pwt

pt = pwt.wordcut(removeRepeat=True, stopDictionary="<full path to txt file>", removeSpaces=True, minLength=1, stopNumber=False, removeNonCharacter=False, caseSensitive=True, ngram=(1, 2), negation=False)
print "|".join(pt.segment(u'ทดสอบการตัดคำ'))
```

* removeRepeat: remove intention insertion spelling error such as (สบายยยยยย)
* stopDictionary: remove word that exist in this specify text file (one word one line)
* removeSpaces: remove blank space
* minLength: minimum length of each word
* stopNumber: remove number if exist
* removeNonCharacter: remove character that are not Thai or English character
* caseSensitive: if set to false, will remove stop word without regarding the case
* ngram: Add word ngram from (1, 2)
* negation: If set to true, then it will add NOT_ to every word after negation word and space

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pythaiwordcut-0.1.12.tar.gz (218.9 kB view details)

Uploaded Source

File details

Details for the file pythaiwordcut-0.1.12.tar.gz.

File metadata

File hashes

Hashes for pythaiwordcut-0.1.12.tar.gz
Algorithm Hash digest
SHA256 ddde261cc49c3ccde5e5a751d9b0df9277062ec8bd29377081e9f933954f6541
MD5 2478966a2cda45ad125edb89caf77793
BLAKE2b-256 f64f9727713e9c29f5591c6f4080de4c649129df7936c85e9af9aec122864efc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page