Skip to main content

A client for the iMetos FieldClimate API.

Project description

python-fieldclimate

A client for the iMetos FieldClimate API: https://api.fieldclimate.com/v1/docs/

To use this, you’ll need HMAC credentials provided by iMetos. See their docs for more info.

Requires Python 3.6. Uses aiohttp, requests, and pycryptodome libraries.

Installation

Use pip to install directly from PyPI:

pip install python-fieldclimate

Authentication

HMAC credentials can be provided in three ways:

  1. Via the init constructor:

    >>> FieldClimateClient(public_key='YOUR', private_key='KEYS')
    
  2. Environment variables FIELDCLIMATE_PUBLIC_KEY and FIELDCLIMATE_PRIVATE_KEY (You can override these variable names too).

  3. Subclassing FieldClimateClient:

    >>> class MyClient(FieldClimateClient):
    ...     private_key = 'YOUR'
    ...     public_key = 'KEYS'
    

Synchronous Usage

The same FieldClimateClient class can be used to make synchronous and asynchronous requests. Synchronous code is easier to read, but Python spends more time waiting around when running it.

This code ran in 12.9 seconds:

>>> from fieldclimate import FieldClimateClient
>>>
>>> def main():
...     client = FieldClimateClient()
...     print(client.get_user())
...     stations = client.get_user_stations()
...     print(len(stations))
...     for station in stations[:10]:
...         print(client.get_data_range(station['name']['original']))
...
{'username': '...', }
1337
{'min_date': '2016-04-27 12:33:37', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-05-05 10:00:13', 'max_date': '2018-10-09 23:00:04'}
{'min_date': '2016-04-27 12:54:09', 'max_date': '2018-09-18 12:14:50'}
{'min_date': '2016-04-27 12:43:29', 'max_date': '2018-09-23 11:00:03'}
{'min_date': '2016-03-24 01:16:40', 'max_date': '2018-10-23 15:55:09'}
{'min_date': '2016-04-27 11:52:15', 'max_date': '2018-10-19 15:00:08'}
{'min_date': '2016-04-28 04:02:11', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2015-11-16 01:05:32', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-04-27 11:34:52', 'max_date': '2018-10-11 20:00:03'}
{'min_date': '2016-06-01 19:00:27', 'max_date': '2018-09-06 16:00:38'}

Asynchronous Usage

Asynchronous mode works by using the client as an async context manager. Async code is more complicated, but allows a lot of work to be done at once.

This code runs in 3.9 seconds:

>>> import asyncio
>>> from fieldclimate import FieldClimateClient
>>>
>>> async def print_user_json(client):
...     print(await client.get_user())
...
>>> async def print_station_dates(client, station_id):
...     print(await client.get_data_range(station_id))
...
>>> async def count_stations_then_print_dates(client):
...     stations = await client.get_user_stations()
...     print(len(stations))
...     await asyncio.gather(*[
...         print_station_dates(client, station['name']['original'])
...         for station in stations[:10]
...     ])
...
>>> async def main():
...     async with FieldClimateClient() as client:
...         await asyncio.gather(
...             print_user_json(client),
...             count_stations_then_print_dates(client),
...         )
...
>>> asyncio.get_event_loop().run_until_complete(main())
{'username': '...', }
1337
{'min_date': '2016-04-27 11:52:15', 'max_date': '2018-10-19 15:00:08'}
{'min_date': '2016-04-27 12:54:09', 'max_date': '2018-09-18 12:14:50'}
{'min_date': '2015-11-16 01:05:32', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-04-27 12:43:29', 'max_date': '2018-09-23 11:00:03'}
{'min_date': '2016-04-27 12:33:37', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-06-01 19:00:27', 'max_date': '2018-09-06 16:00:38'}
{'min_date': '2016-04-28 04:02:11', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-03-24 01:16:40', 'max_date': '2018-10-23 15:55:09'}
{'min_date': '2016-05-05 10:00:13', 'max_date': '2018-10-09 23:00:04'}
{'min_date': '2016-04-27 11:34:52', 'max_date': '2018-10-11 20:00:03'}

Notice how the ordering of the dates is different than before. They are now sorted from the fastest server response to the slowest.

A note on rate limits

According to FieldClimate’s docs, they do not yet enforce rate limiting server-side. Using python-fieldclimate asynchronously allows you to create hundreds or thousands of requests at once. During my testing I noticed the API starting to raise 502 errors when I overloaded it too much.

Please be courteous with your resource consumption!

Methods

The client has methods for each of the corresponding routes listed in the api docs. There’s a lot of them, so see the full list of methods in fieldclimate/__init__.py for more details.

These methods do not have test coverage (and some, like delete_user(), could be dangerous!). However, the underlying logic and utilities they use are all tested.

Every method returns a dictionary response.

Many methods require a station_id argument, like get_data_range() does in the examples above. That ID corresponds to the nested station dictionary item station['name']['original'].

Some method parameters accept multiple representations of data. For example, get_data_last() accepts the time_period parameter. The API docs specify this to be a string like '6h' or '7d', meaning 6 hours or 7 days. FieldClimateClient additionally accepts timedelta objects for this parameter, and will convert them to their equivalent strings for the API (i.e. timedelta(hours=6) is converted to '21600' seconds).

More method parameter cleaners can be found in fieldclimate/utils.py.

Contributing

Pull requests are welcome. Please clean your code with black, write tests, and document.

Ideas for PRs:

  • Drop requests in favor of using aiohttp for both async and sync interfaces.

  • Rate limiting with sane defaults.

  • Proposals for higher level interfaces, e.g. client.stations[i].date_range.

  • Exhaustive mocking to achieve full FC method coverage.

  • More parameter-cleaning utils.

Changes

1.0 (2018-10-24)

  • Initial PyPI release. 🎉

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-fieldclimate-1.0.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

python_fieldclimate-1.0-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file python-fieldclimate-1.0.tar.gz.

File metadata

  • Download URL: python-fieldclimate-1.0.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for python-fieldclimate-1.0.tar.gz
Algorithm Hash digest
SHA256 6cf39415314dc749e833e0d474fefab1296026de4e0a65d52678557a46967d7c
MD5 c5ba9b08724d3eb933898460aedc73b2
BLAKE2b-256 e18a5e3365f16baf1f22cbcce857daf1eea418bdae3e43421cf10bd3c6103e6b

See more details on using hashes here.

File details

Details for the file python_fieldclimate-1.0-py3-none-any.whl.

File metadata

  • Download URL: python_fieldclimate-1.0-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for python_fieldclimate-1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 05a666200196d5a63267518d50fcad0bb02af0ddb545fbe11d4a6c84d13e058f
MD5 20bc9ad9a8af7da9ed069b4f1fdf74ba
BLAKE2b-256 2f316d1dbf7936e9b73613350450725e35b7bfbf73d5baa12a773976f94ff14a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page