Skip to main content

A client for the iMetos FieldClimate API.

Project description

python-fieldclimate

A client for the iMetos FieldClimate API: https://api.fieldclimate.com/v1/docs/

To use this, you’ll need HMAC credentials provided by iMetos. See their docs for more info.

Requires Python 3.6. Uses aiohttp, requests, and pycryptodome libraries.

Installation

Use pip to install directly from PyPI:

pip install python-fieldclimate

Authentication

HMAC credentials can be provided in three ways:

  1. Via the init constructor:

    >>> FieldClimateClient(public_key='YOUR', private_key='KEYS')
    
  2. Environment variables FIELDCLIMATE_PUBLIC_KEY and FIELDCLIMATE_PRIVATE_KEY (You can override these variable names too).

  3. Subclassing FieldClimateClient:

    >>> class MyClient(FieldClimateClient):
    ...     private_key = 'YOUR'
    ...     public_key = 'KEYS'
    

Synchronous Usage

The same FieldClimateClient class can be used to make synchronous and asynchronous requests. Synchronous code is easier to read, but Python spends more time waiting around when running it.

This code ran in 12.9 seconds:

>>> from fieldclimate import FieldClimateClient
>>>
>>> def main():
...     client = FieldClimateClient()
...     print(client.get_user())
...     stations = client.get_user_stations()
...     print(len(stations))
...     for station in stations[:10]:
...         print(client.get_data_range(station))
...
{'username': '...', }
1337
{'min_date': '2016-04-27 12:33:37', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-05-05 10:00:13', 'max_date': '2018-10-09 23:00:04'}
{'min_date': '2016-04-27 12:54:09', 'max_date': '2018-09-18 12:14:50'}
{'min_date': '2016-04-27 12:43:29', 'max_date': '2018-09-23 11:00:03'}
{'min_date': '2016-03-24 01:16:40', 'max_date': '2018-10-23 15:55:09'}
{'min_date': '2016-04-27 11:52:15', 'max_date': '2018-10-19 15:00:08'}
{'min_date': '2016-04-28 04:02:11', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2015-11-16 01:05:32', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-04-27 11:34:52', 'max_date': '2018-10-11 20:00:03'}
{'min_date': '2016-06-01 19:00:27', 'max_date': '2018-09-06 16:00:38'}

Asynchronous Usage

Asynchronous mode works by using the client as an async context manager. Async code is more complicated, but allows a lot of work to be done at once.

This code runs in 3.9 seconds:

>>> import asyncio
>>> from fieldclimate import FieldClimateClient
>>>
>>> async def print_user_json(client):
...     print(await client.get_user())
...
>>> async def print_station_dates(client, station):
...     print(await client.get_data_range(station))
...
>>> async def count_stations_then_print_dates(client):
...     stations = await client.get_user_stations()
...     print(len(stations))
...     await asyncio.gather(*[
...         print_station_dates(client, station)
...         for station in stations[:10]
...     ])
...
>>> async def main():
...     async with FieldClimateClient() as client:
...         await asyncio.gather(
...             print_user_json(client),
...             count_stations_then_print_dates(client),
...         )
...
>>> asyncio.get_event_loop().run_until_complete(main())
{'username': '...', }
1337
{'min_date': '2016-04-27 11:52:15', 'max_date': '2018-10-19 15:00:08'}
{'min_date': '2016-04-27 12:54:09', 'max_date': '2018-09-18 12:14:50'}
{'min_date': '2015-11-16 01:05:32', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-04-27 12:43:29', 'max_date': '2018-09-23 11:00:03'}
{'min_date': '2016-04-27 12:33:37', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-06-01 19:00:27', 'max_date': '2018-09-06 16:00:38'}
{'min_date': '2016-04-28 04:02:11', 'max_date': '2018-10-23 16:00:08'}
{'min_date': '2016-03-24 01:16:40', 'max_date': '2018-10-23 15:55:09'}
{'min_date': '2016-05-05 10:00:13', 'max_date': '2018-10-09 23:00:04'}
{'min_date': '2016-04-27 11:34:52', 'max_date': '2018-10-11 20:00:03'}

Notice how the ordering of the dates is different than before. They are now sorted from the fastest server response to the slowest.

A note on rate limits

According to FieldClimate’s docs, they do not yet enforce rate limiting server-side. Using python-fieldclimate asynchronously allows you to create hundreds or thousands of requests at once. During my testing I noticed the API starting to raise 502 errors when I overloaded it too much.

Please be courteous with your resource consumption!

Methods

The client has methods for each of the corresponding routes listed in the api docs. There’s a lot of them, so see the full list of methods in fieldclimate/__init__.py for more details.

These methods do not have test coverage (and some, like delete_user(), could be dangerous!). However, the underlying logic and utilities they use are all tested.

Every method returns a dictionary response.

Some methods will clean up their arguments in order to make working with the api in python easier. Here are some examples:

  • get_data_last() accepts the time_period parameter. The API docs specify this to be a string like '6h' or '7d', meaning 6 hours or 7 days. FieldClimateClient additionally accepts timedelta objects for this parameter, and will convert them to their equivalent strings for the API (i.e. timedelta(hours=6) is converted to '21600' seconds).

  • Many methods require a station parameter, like get_data_range() does in the examples above. This can be a raw Station ID string, which you can dig out of a station dictionary returned by get_user_stations(). Or, you can pass that dictionary directly in as the station parameter, and the ID will be extracted.

  • More method parameter cleaners can be found in fieldclimate/utils.py.

Contributing

Pull requests are welcome. Please clean your code with black, write tests, and document.

Ideas for PRs:

  • Drop requests in favor of using aiohttp for both async and sync interfaces.

  • Rate limiting with sane defaults.

  • Proposals for higher level interfaces, e.g. client.stations[i].date_range.

  • Exhaustive mocking to achieve full FC method coverage.

  • More parameter-cleaning utils.

Changes

1.1 (2018-10-25)

  • Renamed all station_id method parameters to station, possibly breaking your code.

  • This argument can now handle an entire station dictionary, and will extract the station_id automatically.

1.0 (2018-10-24)

  • Initial PyPI release. 🎉

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-fieldclimate-1.1.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

python_fieldclimate-1.1-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file python-fieldclimate-1.1.tar.gz.

File metadata

  • Download URL: python-fieldclimate-1.1.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for python-fieldclimate-1.1.tar.gz
Algorithm Hash digest
SHA256 0dc9eb6c99eddc410ff67c29b61e427bc465c97667783f2a6e7498025a7d7474
MD5 f6d86b37b169a2809c68fd09d020dc26
BLAKE2b-256 5a7165d7d57cd519d79d9ba75dc46b66e0af9c66030c7ae8fb6ce40898a293ee

See more details on using hashes here.

File details

Details for the file python_fieldclimate-1.1-py3-none-any.whl.

File metadata

  • Download URL: python_fieldclimate-1.1-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.6

File hashes

Hashes for python_fieldclimate-1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a6a8694179700c600bc5f321102abbf5cf02392f6c2f7dad86dec50bb4789a00
MD5 d5ed5625a8dae1386d5d338cc1b42f3d
BLAKE2b-256 2c951930e0576a618722d7682bdef74b78e8618f20f3a154c3d4e87e6a2117ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page