Skip to main content

Python wrapper for glmnet

Project description

Build status Latest version on conda forge Latest version on PyPI Supported python versions for python-glmnet

Fork of python-glmnet with support for more recent Python versions.

This is a Python wrapper for the fortran library used in the R package glmnet. While the library includes linear, logistic, Cox, Poisson, and multiple-response Gaussian, only linear and logistic are implemented in this package.

The API follows the conventions of Scikit-Learn, so it is expected to work with tools from that ecosystem.

Installation

requirements

python-glmnet requires Python version >= 3.6, scikit-learn, numpy, and scipy. Installation from source or via pip requires a Fortran compiler.

conda

conda install -c conda-forge glmnet

pip

pip install glmnet

source

glmnet depends on numpy, scikit-learn and scipy. A working Fortran compiler is also required to build the package. For Mac users, brew install gcc will take care of this requirement.

git clone git@github.com:replicahq/python-glmnet.git
cd python-glmnet
python setup.py install

Usage

General

By default, LogitNet and ElasticNet fit a series of models using the lasso penalty (α = 1) and up to 100 values for λ (determined by the algorithm). In addition, after computing the path of λ values, performance metrics for each value of λ are computed using 3-fold cross validation. The value of λ corresponding to the best performing model is saved as the lambda_max_ attribute and the largest value of λ such that the model performance is within cut_point * standard_error of the best scoring model is saved as the lambda_best_ attribute.

The predict and predict_proba methods accept an optional parameter lamb which is used to select which model(s) will be used to make predictions. If lamb is omitted, lambda_best_ is used.

Both models will accept dense or sparse arrays.

Regularized Logistic Regression

from glmnet import LogitNet

m = LogitNet()
m = m.fit(x, y)

Prediction is similar to Scikit-Learn:

# predict labels
p = m.predict(x)
# or probability estimates
p = m.predict_proba(x)

Regularized Linear Regression

from glmnet import ElasticNet

m = ElasticNet()
m = m.fit(x, y)

Predict:

p = m.predict(x)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_glmnet-2.2.2.post1.tar.gz (89.7 kB view details)

Uploaded Source

Built Distributions

python_glmnet-2.2.2.post1-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

python_glmnet-2.2.2.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_glmnet-2.2.2.post1-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

python_glmnet-2.2.2.post1-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

python_glmnet-2.2.2.post1-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

python_glmnet-2.2.2.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_glmnet-2.2.2.post1-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

python_glmnet-2.2.2.post1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

python_glmnet-2.2.2.post1-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

python_glmnet-2.2.2.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_glmnet-2.2.2.post1-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

python_glmnet-2.2.2.post1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file python_glmnet-2.2.2.post1.tar.gz.

File metadata

  • Download URL: python_glmnet-2.2.2.post1.tar.gz
  • Upload date:
  • Size: 89.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for python_glmnet-2.2.2.post1.tar.gz
Algorithm Hash digest
SHA256 54e68a9499f70b9df4f0ed4b11c2e2bba9095b290d2faf4a2f6cc2cc50d2bcc1
MD5 d08010f0e4831cc04c5d7c9151b20bbc
BLAKE2b-256 580e1ca3d04182fbcfd24f380e35820793899a92ba000043eab2ffa80dde944e

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b6f51193b3f02f25fb0411bad1c37c4fcd62ddcbe62bbcbdca0a2b8f39c61bc0
MD5 5ab551091ce571964a437169597735bf
BLAKE2b-256 827345b86b4b6e844016a28db78f5fa92330f13c98087b25bc760e3ec60eaa88

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 666061b8b1b5d1d9359346bcf3ad73a0274217cfd795c9bbaf23b77340492ba3
MD5 b23a11c69fb75885dee8222cd3f7c3b9
BLAKE2b-256 fa43e3eb73ac1813f15fe7096960e4daf080ec6e57ce79ca72bce11ed65b9393

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dbf623a606bf932928d4f18716dc545551158e6202f4e2db080063891448aed5
MD5 f552876486679592226e48f02e41904a
BLAKE2b-256 4ad4a3223a7b328d4a98c859ebc8ed625a5bc75db4fa0b3d02d68f867f0bed52

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c382f4dac22e051edff6911e0f0164acbb1037eb3bebc54e96dbaaaa3d6febd
MD5 9cf9cf1e8562718136c7eb76945b786e
BLAKE2b-256 75431cfcdeb307d932512dc1bb5934e12ac23a6942dfd240583d470afd3c95f2

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 253d1dc6a66494433292613fc4a430c96eb6fe586f232a7f69b3059b4e06ff29
MD5 bea282465c2306548f164e40521bb200
BLAKE2b-256 9b6ec0c6bec20f61fad71f4c35cdaa30ae7df244d05e2ea2988e73b15bc06d9f

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b074e918676e01aa5530763bdd49143070d68e22d46f4cfd86adbef511abe949
MD5 ca7a875b4f65bb67de3809c300c0423a
BLAKE2b-256 90f5d68e05da27049a6457dafdd05e7f099d5822d064de6afb327d7b0fe79fdf

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf680b8497983c192b73ab91dd75fff499621433ba540c10dfdf98ac07641fa6
MD5 a257b423fb56b345d58dce82fc009bf5
BLAKE2b-256 0d1ba194241d01517e1976e50fa642d2aa39102cff04d2b217e22d4b5921fde6

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a20b7844810a598edb997f327c9681b3e6039f10090184139fb4d676ccc0aa43
MD5 7ff4bdb92d3dd68363a3444812de7933
BLAKE2b-256 a45e1fca8accb50794902d27caa9d4396cb4cee6c766c7fef0bb4685291ffcd9

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 55a537b0bb90d578bc139b2729684b0b626d4001204002d418b9bfbf159e1cd7
MD5 dbb65af7e418dead392002000ab828a2
BLAKE2b-256 3187dc89e53e79b6cdd06eb4cd8fc288072b0f0cc2e6c97a3a417b7df1da2d70

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 207c9d7909e6439682c960a34e8f8cbc5f7097122debb2485c44df1a325131c3
MD5 80df74f56c7fe795f0c92a8eae008648
BLAKE2b-256 03c7f935e8ffb3a2d7883ef11af98f927b7c7b925d4305bf73cdfd575905a36a

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 40d0b6e3c71054272f2c33aac7b20476f95bd2fd76eb7ab4871f35ebfae2378d
MD5 cbcbf6f91e6ba64fd599cfc76e41acc4
BLAKE2b-256 b96edb698e633ea570e1d89e3bc7a6667d5539df4efc82d180f224a0855fc9c2

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6aaa8c9ebf4846762b63c6ee2df3b700f5ff25ffdfa7f55152c74e5a5d43abdb
MD5 27d00475a3ebfcc3fe518588d9aceb74
BLAKE2b-256 a8d8e62d1ea2013163648737d1d6b1e22c50ff57463e30112772d764ec7e186b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page