Skip to main content

Python wrapper for glmnet

Project description

Build status Latest version on PyPI Supported python versions for python-glmnet

Fork of python-glmnet with support for more recent Python versions.

This is a Python wrapper for the fortran library used in the R package glmnet. While the library includes linear, logistic, Cox, Poisson, and multiple-response Gaussian, only linear and logistic are implemented in this package.

The API follows the conventions of Scikit-Learn, so it is expected to work with tools from that ecosystem.

Installation

requirements

python-glmnet requires Python version >= 3.9, scikit-learn, numpy, and scipy. Installation from source or via pip requires a Fortran compiler.

conda

conda install -c conda-forge glmnet

pip

pip install python-glmnet

source

glmnet depends on numpy, scikit-learn and scipy. A working Fortran compiler is also required to build the package. For Mac users, brew install gcc will take care of this requirement.

git clone git@github.com:replicahq/python-glmnet.git
cd python-glmnet
python setup.py install

Usage

General

By default, LogitNet and ElasticNet fit a series of models using the lasso penalty (α = 1) and up to 100 values for λ (determined by the algorithm). In addition, after computing the path of λ values, performance metrics for each value of λ are computed using 3-fold cross validation. The value of λ corresponding to the best performing model is saved as the lambda_max_ attribute and the largest value of λ such that the model performance is within cut_point * standard_error of the best scoring model is saved as the lambda_best_ attribute.

The predict and predict_proba methods accept an optional parameter lamb which is used to select which model(s) will be used to make predictions. If lamb is omitted, lambda_best_ is used.

Both models will accept dense or sparse arrays.

Regularized Logistic Regression

from glmnet import LogitNet

m = LogitNet()
m = m.fit(x, y)

Prediction is similar to Scikit-Learn:

# predict labels
p = m.predict(x)
# or probability estimates
p = m.predict_proba(x)

Regularized Linear Regression

from glmnet import ElasticNet

m = ElasticNet()
m = m.fit(x, y)

Predict:

p = m.predict(x)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_glmnet-2.2.2.post2.tar.gz (89.7 kB view details)

Uploaded Source

Built Distributions

python_glmnet-2.2.2.post2-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

python_glmnet-2.2.2.post2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_glmnet-2.2.2.post2-cp311-cp311-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

python_glmnet-2.2.2.post2-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

python_glmnet-2.2.2.post2-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

python_glmnet-2.2.2.post2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_glmnet-2.2.2.post2-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

python_glmnet-2.2.2.post2-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

python_glmnet-2.2.2.post2-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

python_glmnet-2.2.2.post2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_glmnet-2.2.2.post2-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

python_glmnet-2.2.2.post2-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file python_glmnet-2.2.2.post2.tar.gz.

File metadata

  • Download URL: python_glmnet-2.2.2.post2.tar.gz
  • Upload date:
  • Size: 89.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for python_glmnet-2.2.2.post2.tar.gz
Algorithm Hash digest
SHA256 e5af21883cbe9c82eba44c5ee3e7639d391ef387e8681f45a7e54237705fa12b
MD5 90d5f861a2c9081639046e0317865c5b
BLAKE2b-256 f46778ffb8ea171d4cb1274b997cb701245d180d896c75c35a45843c54470f5a

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 162362889d15fe12e7e94d125938541789531fdcc3a89c3b731a36561b489d57
MD5 0ca4126b0e334bf647b65b33616eb6e1
BLAKE2b-256 d5dee6ed491f67138dcc2d2cf3c9063e8a1c338eddd354e599faa79bf816409f

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 680fdee07c588d607d764f1f4060c5080769f3026c6c407832779b912a319587
MD5 3bbf304425b68100790fdad00d706c0f
BLAKE2b-256 c803f569e7ad29d367bd5db29e3bb94ed27d93932b7e675b0fdd917f4b5ae20b

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b6d2e63de769c0b61c9b4dbe84d827aad3e5e404daf85f02178203892827910
MD5 67a6f1eab01cc2e6816f8c72d0c9bc0d
BLAKE2b-256 6864e6d2e52f9d312c7b548ef8ea8545d9083fab28476a60d98054081f215f07

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5cf93077079e189a701452c0f307f9dbeb977f03520e09f14ee4e313007c0683
MD5 10704ba763ffce1f09227df32edc1efa
BLAKE2b-256 b1aa21c09ff47a38b6afa222be237d45d995ee07dc4eaa81a7f7b13978f5569d

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c8bedbeeac5978d3f678b374ac79951276f86a34d2fc89dbccd17f2e79f05ec0
MD5 a7a54e1e949d6d55f107cb09093c0c71
BLAKE2b-256 cd3d5e559b049f96b393de36e758c4fc175a54855950f8e51cf5c7db94d6374c

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03214994cf980e3e372191f81572a9535f01a591aa9cb3d6c0a9af57ece01fa7
MD5 09b5c498789e85e3c660a2c1426d16ae
BLAKE2b-256 5604601e47e9d33e02e5f54eff972901bed2b41f5e8334bfddecf92e0e9275c4

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fecb8e1ed1a9473f4dc927f14372d30602cf6b4f023ee79a46e29d73712e464
MD5 e3fab3936d56e6dca9147612bc0fea5b
BLAKE2b-256 cc569f1bd0a9b17f758cc3733e75e6b1210fe6feb368de4517b02a24c217e6b1

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20d753fc892bab63b8f5ef8393b8a1563eb5011a96f8fecfddc03b9752de18df
MD5 94b69c890d45d85bd35eae7b67dc3f47
BLAKE2b-256 443015191805983f828b000869d8c4d1258a4c450c02f1823535f6c3c91dbeab

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d1925becce05e047908fb902950607ecb5393b7b628db0fadf7d287fbc353f2f
MD5 f12e7823d60287dd2f8bf6cfc581ad69
BLAKE2b-256 e04c89c6d3f8c89e31eed834469e9d9043f2acc398d9dd27b6489775d4944c0b

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e7b8864a591962910425ca3e6772ce7487696197a77e81bc3d2e713867f7a49
MD5 f7ccb64d4aede8011d17463fd9b88958
BLAKE2b-256 b60b66e33307ea7b3934791aa4269eb46b68a738518a73cdd493c2f38bb0738f

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab0b1ce9b22632299f96f73776b221bb634684712bbdca8f3ccd53337e022015
MD5 7e752ec1d91ad50f481a554335aff1f8
BLAKE2b-256 9383c3839aceee53412af47999c00cdf52a1e8f181500916752afa3d13aa6c64

See more details on using hashes here.

File details

Details for the file python_glmnet-2.2.2.post2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for python_glmnet-2.2.2.post2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 201191248b1e3dae1c50f10bd95bf817edc0ffd6d3d2f04837df1803fefbe326
MD5 2450ab41fca4e7cd22e13a4e0d6a0f38
BLAKE2b-256 4aec1c6caabf744a39be0baed60cacbcb2f7dc269304703c733a97ab0b26a244

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page