Skip to main content

Forecasting timeseries with PyTorch - dataloaders, normalizers, metrics and models

Project description

Our article on Towards Data Science introduces the package and provides background information.

Pytorch Forecasting aims to ease timeseries forecasting with neural networks for real-world cases and research alike. Specifically, the package provides

  • A timeseries dataset class which abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc.
  • A base model class which provides basic training of timeseries models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots
  • Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities
  • Multi-horizon timeseries metrics
  • Ranger optimizer for faster model training
  • Hyperparameter tuning with optuna

The package is built on pytorch-lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.

Installation

If you are working windows, you need to first install PyTorch with

pip install torch -f https://download.pytorch.org/whl/torch_stable.html.

Otherwise, you can proceed with

pip install pytorch-forecasting

Alternatively, you can install the package via conda

conda install pytorch-forecasting -c conda-forge

If you do not have pytorch installed, install it is recommended to install it first from the pytorch channel

conda install pytorch -c pytorch

Documentation

Visit https://pytorch-forecasting.readthedocs.io to read the documentation with detailed tutorials.

Available models

Usage

import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping

from pytorch_forecasting import TimeSeriesDataSet, TemporalFusionTransformer

# load data
data = ...

# define dataset
max_encode_length = 36
max_prediction_length = 6
training_cutoff = "YYYY-MM-DD"  # day for cutoff

training = TimeSeriesDataSet(
    data[lambda x: x.date <= training_cutoff],
    time_idx= ...,
    target= ...,
    group_ids=[ ... ],
    max_encode_length=max_encode_length,
    max_prediction_length=max_prediction_length,
    static_categoricals=[ ... ],
    static_reals=[ ... ],
    time_varying_known_categoricals=[ ... ],
    time_varying_known_reals=[ ... ],
    time_varying_unknown_categoricals=[ ... ],
    time_varying_unknown_reals=[ ... ],
)


validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training.index.time.max() + 1, stop_randomization=True)
batch_size = 128
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2)


early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=1, verbose=False, mode="min")
lr_logger = LearningRateLogger()
trainer = pl.Trainer(
    max_epochs=100,
    gpus=0,
    gradient_clip_val=0.1,
    early_stop_callback=early_stop_callback,
    limit_train_batches=30,
    callbacks=[lr_logger],
)


tft = TemporalFusionTransformer.from_dataset(
    training,
    learning_rate=0.03,
    hidden_size=32,
    attention_head_size=1,
    dropout=0.1,
    hidden_continuous_size=16,
    output_size=7,
    loss=QuantileLoss(),
    log_interval=2,
    reduce_on_plateau_patience=4
)
print(f"Number of parameters in network: {tft.size()/1e3:.1f}k")

# find optimal learning rate
res = trainer.lr_find(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader, early_stop_threshold=1000.0, max_lr=0.3,
)

print(f"suggested learning rate: {res.suggestion()}")
fig = res.plot(show=True, suggest=True)
fig.show()

trainer.fit(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_forecasting-0.4.1.tar.gz (61.6 kB view details)

Uploaded Source

Built Distribution

pytorch_forecasting-0.4.1-py3-none-any.whl (67.0 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_forecasting-0.4.1.tar.gz.

File metadata

  • Download URL: pytorch_forecasting-0.4.1.tar.gz
  • Upload date:
  • Size: 61.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.10 CPython/3.7.9 Linux/5.4.0-1025-azure

File hashes

Hashes for pytorch_forecasting-0.4.1.tar.gz
Algorithm Hash digest
SHA256 c3592f549246505ff95f97ff5237c0ef6124d0b29591a318ff8b9aa535042320
MD5 a90cfc3296a82a75cdbe98d0a05a07ea
BLAKE2b-256 fa762eb4b0f6c8fed8821fd3441e7c5c4cacc7e9803d7c3bd9b55fff0dbeca4a

See more details on using hashes here.

File details

Details for the file pytorch_forecasting-0.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_forecasting-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9a4f8cbea81520da7a21fc9c378b4889e9cd59213f94d1242390a6b5dc09835c
MD5 29e7465324cbef6258f3ac6e88189951
BLAKE2b-256 035480f805e7fe1d58c8601cff72fd486ecb01c418cb1f222565843a0ac9d202

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page