Skip to main content

Forecasting timeseries with PyTorch - dataloaders, normalizers, metrics and models

Project description

Our article on Towards Data Science introduces the package and provides background information.

Pytorch Forecasting aims to ease timeseries forecasting with neural networks for real-world cases and research alike. Specifically, the package provides

  • A timeseries dataset class which abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc.
  • A base model class which provides basic training of timeseries models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots
  • Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities
  • Multi-horizon timeseries metrics
  • Ranger optimizer for faster model training
  • Hyperparameter tuning with optuna

The package is built on pytorch-lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.

Installation

If you are working windows, you need to first install PyTorch with

pip install torch -f https://download.pytorch.org/whl/torch_stable.html.

Otherwise, you can proceed with

pip install pytorch-forecasting

Alternatively, you can install the package via conda

conda install pytorch-forecasting -c conda-forge

If you do not have pytorch installed, install it is recommended to install it first from the pytorch channel

conda install pytorch -c pytorch

Documentation

Visit https://pytorch-forecasting.readthedocs.io to read the documentation with detailed tutorials.

Available models

Usage

import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor

from pytorch_forecasting import TimeSeriesDataSet, TemporalFusionTransformer

# load data
data = ...

# define dataset
max_encode_length = 36
max_prediction_length = 6
training_cutoff = "YYYY-MM-DD"  # day for cutoff

training = TimeSeriesDataSet(
    data[lambda x: x.date <= training_cutoff],
    time_idx= ...,
    target= ...,
    group_ids=[ ... ],
    max_encode_length=max_encode_length,
    max_prediction_length=max_prediction_length,
    static_categoricals=[ ... ],
    static_reals=[ ... ],
    time_varying_known_categoricals=[ ... ],
    time_varying_known_reals=[ ... ],
    time_varying_unknown_categoricals=[ ... ],
    time_varying_unknown_reals=[ ... ],
)


validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training.index.time.max() + 1, stop_randomization=True)
batch_size = 128
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2)


early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=1, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
    max_epochs=100,
    gpus=0,
    gradient_clip_val=0.1,
    limit_train_batches=30,
    callbacks=[lr_logger, early_stop_callback],
)


tft = TemporalFusionTransformer.from_dataset(
    training,
    learning_rate=0.03,
    hidden_size=32,
    attention_head_size=1,
    dropout=0.1,
    hidden_continuous_size=16,
    output_size=7,
    loss=QuantileLoss(),
    log_interval=2,
    reduce_on_plateau_patience=4
)
print(f"Number of parameters in network: {tft.size()/1e3:.1f}k")

# find optimal learning rate
res = trainer.lr_find(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader, early_stop_threshold=1000.0, max_lr=0.3,
)

print(f"suggested learning rate: {res.suggestion()}")
fig = res.plot(show=True, suggest=True)
fig.show()

trainer.fit(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_forecasting-0.5.1.tar.gz (63.3 kB view details)

Uploaded Source

Built Distribution

pytorch_forecasting-0.5.1-py3-none-any.whl (69.0 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_forecasting-0.5.1.tar.gz.

File metadata

  • Download URL: pytorch_forecasting-0.5.1.tar.gz
  • Upload date:
  • Size: 63.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.2 CPython/3.7.9 Linux/5.4.0-1026-azure

File hashes

Hashes for pytorch_forecasting-0.5.1.tar.gz
Algorithm Hash digest
SHA256 c6f1764c3ced0ba729fb7275848bc0a46a6e5aeae184ff818e86f510da4d37ae
MD5 369685f9504070bb50e0ef2d6b29930b
BLAKE2b-256 b277a6efd4bf3778cf02b61b248c25d1cc9dbadf75e53b8a5b5f854315f8cc55

See more details on using hashes here.

File details

Details for the file pytorch_forecasting-0.5.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_forecasting-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 33b3e92f746daf0d14d44937eb3f653b0d553f6c2873691cd3e36c5ed88da106
MD5 560f65e96e9a20d45a5bc9001669d9a2
BLAKE2b-256 0b591f1a7209dbc3656d54ba0ff9397c602e15df6384e742877918817ef0733a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page