Skip to main content

Forecasting timeseries with PyTorch - dataloaders, normalizers, metrics and models

Project description

Our article on Towards Data Science introduces the package and provides background information.

Pytorch Forecasting aims to ease timeseries forecasting with neural networks for real-world cases and research alike. Specifically, the package provides

  • A timeseries dataset class which abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc.
  • A base model class which provides basic training of timeseries models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots
  • Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities
  • Multi-horizon timeseries metrics
  • Ranger optimizer for faster model training
  • Hyperparameter tuning with optuna

The package is built on pytorch-lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.

Installation

If you are working on windows, you need to first install PyTorch with

pip install torch -f https://download.pytorch.org/whl/torch_stable.html.

Otherwise, you can proceed with

pip install pytorch-forecasting

Alternatively, you can install the package via conda

conda install pytorch-forecasting pytorch -c pytorch>=1.7 -c conda-forge

PyTorch Forecasting is now installed from the conda-forge channel while PyTorch is install from the pytorch channel.

Documentation

Visit https://pytorch-forecasting.readthedocs.io to read the documentation with detailed tutorials.

Available models

To implement new models, see the How to implement new models tutorial. It covers basic as well as advanced architectures.

Usage

import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor

from pytorch_forecasting import TimeSeriesDataSet, TemporalFusionTransformer

# load data
data = ...

# define dataset
max_encode_length = 36
max_prediction_length = 6
training_cutoff = "YYYY-MM-DD"  # day for cutoff

training = TimeSeriesDataSet(
    data[lambda x: x.date <= training_cutoff],
    time_idx= ...,
    target= ...,
    group_ids=[ ... ],
    max_encode_length=max_encode_length,
    max_prediction_length=max_prediction_length,
    static_categoricals=[ ... ],
    static_reals=[ ... ],
    time_varying_known_categoricals=[ ... ],
    time_varying_known_reals=[ ... ],
    time_varying_unknown_categoricals=[ ... ],
    time_varying_unknown_reals=[ ... ],
)


validation = TimeSeriesDataSet.from_dataset(training, data, min_prediction_idx=training.index.time.max() + 1, stop_randomization=True)
batch_size = 128
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=2)
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size, num_workers=2)


early_stop_callback = EarlyStopping(monitor="val_loss", min_delta=1e-4, patience=1, verbose=False, mode="min")
lr_logger = LearningRateMonitor()
trainer = pl.Trainer(
    max_epochs=100,
    gpus=0,
    gradient_clip_val=0.1,
    limit_train_batches=30,
    callbacks=[lr_logger, early_stop_callback],
)


tft = TemporalFusionTransformer.from_dataset(
    training,
    learning_rate=0.03,
    hidden_size=32,
    attention_head_size=1,
    dropout=0.1,
    hidden_continuous_size=16,
    output_size=7,
    loss=QuantileLoss(),
    log_interval=2,
    reduce_on_plateau_patience=4
)
print(f"Number of parameters in network: {tft.size()/1e3:.1f}k")

# find optimal learning rate
res = trainer.lr_find(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader, early_stop_threshold=1000.0, max_lr=0.3,
)

print(f"suggested learning rate: {res.suggestion()}")
fig = res.plot(show=True, suggest=True)
fig.show()

trainer.fit(
    tft, train_dataloader=train_dataloader, val_dataloaders=val_dataloader,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_forecasting-0.7.1.tar.gz (76.8 kB view details)

Uploaded Source

Built Distribution

pytorch_forecasting-0.7.1-py3-none-any.whl (83.7 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_forecasting-0.7.1.tar.gz.

File metadata

  • Download URL: pytorch_forecasting-0.7.1.tar.gz
  • Upload date:
  • Size: 76.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.4 CPython/3.7.9 Linux/5.4.0-1031-azure

File hashes

Hashes for pytorch_forecasting-0.7.1.tar.gz
Algorithm Hash digest
SHA256 b313fea1418c7f9d2cbe1bfb6dc4ac482197afbd7b47b8a93450d75a888bc6f4
MD5 3bb009f73abee198ab4199720176bb4c
BLAKE2b-256 5fd12709b1f2feff97a36ca27dcbfb9e9cb10a62ce55f3dabb1ec576f0c44454

See more details on using hashes here.

File details

Details for the file pytorch_forecasting-0.7.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_forecasting-0.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 3dbadc2e56bdc3925138f190a303dd142ca448b21d820bc53531e991f12bb2b4
MD5 42e9a0e8275775cd74b4027b265dff8b
BLAKE2b-256 66b4a2f5b718022a92ce1aca3635f8a037b10da8d9f0202b49b5dac6442b4efb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page