Skip to main content

A lightweight library to help with training neural networks in PyTorch.

Project description

image image image image image
image imageimage imageimage
image image image
image Twitter discord numfocus
image link

TL;DR

Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

PyTorch-Ignite teaser

Click on the image to see complete code

Features

  • Less code than pure PyTorch while ensuring maximum control and simplicity

  • Library approach and no program's control inversion - Use ignite where and when you need

  • Extensible API for metrics, experiment managers, and other components

Table of Contents

Why Ignite?

Ignite is a library that provides three high-level features:

  • Extremely simple engine and event system
  • Out-of-the-box metrics to easily evaluate models
  • Built-in handlers to compose training pipeline, save artifacts and log parameters and metrics

Simplified training and validation loop

No more coding for/while loops on epochs and iterations. Users instantiate engines and run them.

Example
from ignite.engine import Engine, Events, create_supervised_evaluator
from ignite.metrics import Accuracy


# Setup training engine:
def train_step(engine, batch):
    # Users can do whatever they need on a single iteration
    # Eg. forward/backward pass for any number of models, optimizers, etc
    # ...

trainer = Engine(train_step)

# Setup single model evaluation engine
evaluator = create_supervised_evaluator(model, metrics={"accuracy": Accuracy()})

def validation():
    state = evaluator.run(validation_data_loader)
    # print computed metrics
    print(trainer.state.epoch, state.metrics)

# Run model's validation at the end of each epoch
trainer.add_event_handler(Events.EPOCH_COMPLETED, validation)

# Start the training
trainer.run(training_data_loader, max_epochs=100)

Power of Events & Handlers

The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g. lambda, simple function, class method, etc. Thus, we do not require to inherit from an interface and override its abstract methods which could unnecessarily bulk up your code and its complexity.

Execute any number of functions whenever you wish

Examples
trainer.add_event_handler(Events.STARTED, lambda _: print("Start training"))

# attach handler with args, kwargs
mydata = [1, 2, 3, 4]
logger = ...

def on_training_ended(data):
    print(f"Training is ended. mydata={data}")
    # User can use variables from another scope
    logger.info("Training is ended")


trainer.add_event_handler(Events.COMPLETED, on_training_ended, mydata)
# call any number of functions on a single event
trainer.add_event_handler(Events.COMPLETED, lambda engine: print(engine.state.times))

@trainer.on(Events.ITERATION_COMPLETED)
def log_something(engine):
    print(engine.state.output)

Built-in events filtering

Examples
# run the validation every 5 epochs
@trainer.on(Events.EPOCH_COMPLETED(every=5))
def run_validation():
    # run validation

# change some training variable once on 20th epoch
@trainer.on(Events.EPOCH_STARTED(once=20))
def change_training_variable():
    # ...

# Trigger handler with customly defined frequency
@trainer.on(Events.ITERATION_COMPLETED(event_filter=first_x_iters))
def log_gradients():
    # ...

Stack events to share some actions

Examples

Events can be stacked together to enable multiple calls:

@trainer.on(Events.COMPLETED | Events.EPOCH_COMPLETED(every=10))
def run_validation():
    # ...

Custom events to go beyond standard events

Examples

Custom events related to backward and optimizer step calls:

from ignite.engine import EventEnum


class BackpropEvents(EventEnum):
    BACKWARD_STARTED = 'backward_started'
    BACKWARD_COMPLETED = 'backward_completed'
    OPTIM_STEP_COMPLETED = 'optim_step_completed'

def update(engine, batch):
    # ...
    loss = criterion(y_pred, y)
    engine.fire_event(BackpropEvents.BACKWARD_STARTED)
    loss.backward()
    engine.fire_event(BackpropEvents.BACKWARD_COMPLETED)
    optimizer.step()
    engine.fire_event(BackpropEvents.OPTIM_STEP_COMPLETED)
    # ...

trainer = Engine(update)
trainer.register_events(*BackpropEvents)

@trainer.on(BackpropEvents.BACKWARD_STARTED)
def function_before_backprop(engine):
    # ...

Out-of-the-box metrics

Example
precision = Precision(average=False)
recall = Recall(average=False)
F1_per_class = (precision * recall * 2 / (precision + recall))
F1_mean = F1_per_class.mean()  # torch mean method
F1_mean.attach(engine, "F1")

Installation

From pip:

pip install pytorch-ignite

From conda:

conda install ignite -c pytorch

From source:

pip install git+https://github.com/pytorch/ignite

Nightly releases

From pip:

pip install --pre pytorch-ignite

From conda (this suggests to install pytorch nightly release instead of stable version as dependency):

conda install ignite -c pytorch-nightly

Docker Images

Using pre-built images

Pull a pre-built docker image from our Docker Hub and run it with docker v19.03+.

docker run --gpus all -it -v $PWD:/workspace/project --network=host --shm-size 16G pytorchignite/base:latest /bin/bash
List of available pre-built images

Base

  • pytorchignite/base:latest
  • pytorchignite/apex:latest
  • pytorchignite/hvd-base:latest
  • pytorchignite/hvd-apex:latest
  • pytorchignite/msdp-apex:latest

Vision:

  • pytorchignite/vision:latest
  • pytorchignite/hvd-vision:latest
  • pytorchignite/apex-vision:latest
  • pytorchignite/hvd-apex-vision:latest
  • pytorchignite/msdp-apex-vision:latest

NLP:

  • pytorchignite/nlp:latest
  • pytorchignite/hvd-nlp:latest
  • pytorchignite/apex-nlp:latest
  • pytorchignite/hvd-apex-nlp:latest
  • pytorchignite/msdp-apex-nlp:latest

For more details, see here.

Getting Started

Few pointers to get you started:

Documentation

Additional Materials

Examples

Tutorials

Reproducible Training Examples

Inspired by torchvision/references, we provide several reproducible baselines for vision tasks:

  • ImageNet - logs on Ignite Trains server coming soon ...
  • Pascal VOC2012 - logs on Ignite Trains server coming soon ...

Features:

Code-Generator application

The easiest way to create your training scripts with PyTorch-Ignite:

Communication

User feedback

We have created a form for "user feedback". We appreciate any type of feedback, and this is how we would like to see our community:

  • If you like the project and want to say thanks, this the right place.
  • If you do not like something, please, share it with us, and we can see how to improve it.

Thank you!

Contributing

Please see the contribution guidelines for more information.

As always, PRs are welcome :)

Projects using Ignite

Research papers
Blog articles, tutorials, books
Toolkits
Others

See other projects at "Used by"

If your project implements a paper, represents other use-cases not covered in our official tutorials, Kaggle competition's code, or just your code presents interesting results and uses Ignite. We would like to add your project to this list, so please send a PR with brief description of the project.

Citing Ignite

If you use PyTorch-Ignite in a scientific publication, we would appreciate citations to our project.

@misc{pytorch-ignite,
  author = {V. Fomin and J. Anmol and S. Desroziers and J. Kriss and A. Tejani},
  title = {High-level library to help with training neural networks in PyTorch},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/pytorch/ignite}},
}

About the team & Disclaimer

PyTorch-Ignite is a NumFOCUS Affiliated Project, operated and maintained by volunteers in the PyTorch community in their capacities as individuals (and not as representatives of their employers). See the "About us" page for a list of core contributors. For usage questions and issues, please see the various channels here. For all other questions and inquiries, please send an email to contact@pytorch-ignite.ai.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_ignite-0.6.0.dev20241102.tar.gz (224.4 kB view details)

Uploaded Source

Built Distribution

pytorch_ignite-0.6.0.dev20241102-py3-none-any.whl (328.0 kB view details)

Uploaded Python 3

File details

Details for the file pytorch_ignite-0.6.0.dev20241102.tar.gz.

File metadata

File hashes

Hashes for pytorch_ignite-0.6.0.dev20241102.tar.gz
Algorithm Hash digest
SHA256 acd8a60224c50615ba2ec04961695eebc8a1cdbdc6aecf798852c1e576843007
MD5 cb7cdc8f7c8ca240c012552f0400e6e5
BLAKE2b-256 02aebae98a7b9715e5c68285403027817e3740e99da9faaddb93958949c026e7

See more details on using hashes here.

File details

Details for the file pytorch_ignite-0.6.0.dev20241102-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_ignite-0.6.0.dev20241102-py3-none-any.whl
Algorithm Hash digest
SHA256 e965b9711e101876fbe238134b261c2fcce973eedbb01aeb396502b87cffc5b0
MD5 68da73b9e1b6e65e8675067fa8088019
BLAKE2b-256 82c34dbacc6c85d505659569a9337c2c4bdfca828522b1a82f6fdcc46e91631d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page