The Mighty Monitor Trainer for your pytorch models.
Project description
# pytorch-mighty
The Mighty Monitor Trainer for your pytorch models.
### Quick start
Install [pytorch](https://pytorch.org/)
$ pip install pytorch-mighty
$ visdom -port 8097 - start visdom server on port 8097
In a separate terminal, run python examples.py
Navigate to http://localhost:8097 to see the training progress.
Check-out more examples on [http://85.217.171.57:8097](http://85.217.171.57:8097/). Give your browser a few minutes to parse the json data.
### Articles, implemented in the package
- Fong, R. C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.
Used in: [trainer/mask.py](mighty/trainer/mask.py)
- Belghazi, M. I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., & Hjelm, R. D. (2018). Mine: mutual information neural estimation.
Used in: [monitor/mutual_info/neural_estimation.py](mighty/monitor/mutual_info/neural_estimation.py)
- Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.
Used in: [monitor/mutual_info/npeet.py](mighty/monitor/mutual_info/npeet.py)
Original source code: https://github.com/gregversteeg/NPEET
- Ince, R. A., Giordano, B. L., Kayser, C., Rousselet, G. A., Gross, J., & Schyns, P. G. (2017). A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula. Human brain mapping, 38(3), 1541-1573.
Used in [monitor/mutual_info/gcmi.py](mighty/monitor/mutual_info/gcmi.py)
Original source code: https://github.com/robince/gcmi
### Projects that use pytorch-mighty
[MCMC_BinaryNet](https://github.com/dizcza/MCMC_BinaryNet) - Markov Chain Monte Carlo binary networks optimization.
[EmbedderSDR](https://github.com/dizcza/EmbedderSDR) - encode images into binary Sparse Distributed Representation.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.